Next Generation
Environmental Technologies

Benefits and Barriers

Robert J. Lempert, Parry Norling, Christopher Pernin, Susan Resetar, Sergej Mahnovski

Prepared for Office of Science and Technology Policy
The research described in this report was conducted by RAND’s Science and Technology Policy Institute for the Office of Science and Technology Policy under Contract ENG-9812731.
Preface

Next Generation Environmental Technologies (NGETs) focus on the redesign, at the molecular level, of manufacturing processes and products so as to reduce or eliminate the use of hazardous materials. The potential for such technologies suggests that they may play an important role in a new approach to environmental protection. NGETs thus raise important policy questions, including the range of benefits such technologies have already provided and may in the future provide and the types of actions commensurate with these benefits that policymakers might take to encourage their development and adoption. This report examines 25 case studies of such Next Generation Environmental Technologies to begin to address such questions.

For readers unfamiliar with NGETs, this study will provide a survey of their promise and weaknesses. For researchers and practitioners creating new NGETs, this study aims to provide a broader context for their efforts. For policymakers, this study aims to provide the raw materials for a systematic assessment of the range of potential benefits of NGETs and the portfolio of policies needed to move them forward.

About the S&T Policy Institute

Originally created by Congress in 1991 as the Critical Technologies Institute and renamed in 1998, the Science and Technology Policy Institute is a federally funded research and development center sponsored by the National Science Foundation and managed by RAND. The Institute’s mission is to help improve public policy by conducting objective, independent research and analysis on policy issues that involve science and technology. To this end, the Institute

1. Supports the Office of Science and Technology Policy and other Executive Branch agencies, offices, and councils

2. Helps science and technology decisionmakers understand the likely consequences of their decisions and choose among alternative policies

3. Helps improve understanding in both the public and private sectors of the ways in which science and technology can better serve national objectives.

In carrying out its mission, the Institute consults broadly with representatives from private industry, institutions of higher education, and other nonprofit institutions.
Inquiries regarding the Science and Technology Policy Institute may be directed to the addresses below.

Helga Rippen, Ph.D., M.D., M.P.H.
Director
Science and Technology Policy Institute
Contents

Preface ... iii
Figures .. vii
Tables ... ix
Summary .. xi
Acknowledgments .. xiii
Acronyms .. xv
Introduction .. 1
What Are Next Generation Environmental Technologies? 5
Assessing the Promise of NGETs ... 7
Mechanisms for Gaining the Benefits from NGETs 9
Mechanisms .. 9
Cost Reduction ... 9
Risk Reduction .. 10
Technology Spillover Effects—Technology Transfer 11
Lessons from Case Studies ... 13
Overview of Cases ... 13
Near-Term Benefits of NGETs and Barriers to Their Adoption 20
I. NGETs Can Provide Benefits in All the Important Areas Identified in Our Study ... 20
 Environmental Benefits ... 20
 Security Occupational Safety and Health Benefits............................ 25
 Economic Benefits ... 27
II. NGETs Can Eliminate the Use and Generation of Hazardous Substances at Little or No Additional Cost 28
III. NGETs Are Adopted for a Wide Variety of Reasons 29
IV. Barriers Are Significant .. 31
Longer-Term Opportunities for NGETs ... 35
 Responding to Societal Demand Through New Processes and New Chemicals .. 35
 Opening New Green Pathways—Addressing Uncertain Problems with NGETs ... 37
Conclusions and Observations ... 41
 NGETs Can Provide Benefits in All Areas Studied 41
 NGETs Can Address Uncertainties .. 41
 Firms Adopt NGETs for a Number of Different Reasons 42
 Policymakers Face a Number of Challenges 42
Appendix A: Descriptions of the 25 Case Studies ... A-1
Appendix B: Government Policies and Increased Adoption of NGETs……..B-119

Appendix C: Opportunities for Further Study: Additional Cases from the First International Conference on Green & Sustainable Chemistry, Tokyo, March 2003..C-127
Figures

Figure 1. Science and Technology Landscape. .. 12

Figure 2. Breakdown of Total TRI Chemical Releases Over All Industries. 21

Figure 3. TRI Release Breakdown of the Chemical and Allied Products Industry (SIC code 28) (% of emissions)... 22

Figure 4. Top Ten Chemicals Released Excluding the Mining Industry (% of emissions)... 23
Tables

Table 1. Summary of case studies. ... 15
Table 2. Distribution of case studies. Cases as listed in Tables 1 and A1......... 19
Table 3. Top ten chemicals released into the air... 23
Summary

Next Generation Environmental Technologies (NGETs) represent a set of advanced manufacturing technologies that have the potential to produce environmentally benign products and processes. These technologies offer a new approach to environmental protection: Rather than focusing on the cleanup and control of waste and hazardous materials, they involve the redesign of industrial products and processes to reduce the quantity of material inputs required and to eliminate broad classes of environmentally detrimental outputs. When successfully implemented, NGETs offer the promise of substantial new advances in environmental protection often at low cost and even with a net economic benefit. They also raise important policy issues related to the magnitude and importance of the benefits that can be realized and the types of actions that might be taken to encourage their development and diffusion.

This report examines 25 existing NGETs to begin to address these issues. The technologies considered span the range of development from early research to full deployment in profitable businesses. Those that have been commercialized are offering benefits in a variety of areas, including the environment, national security, occupational safety and health, and the economy. Others that are still in various developmental stages offer similar promise.

Most of the technologies reviewed here draw on applications of the emerging science of green chemistry, an important source for NGETs. For each case study, we describe the underlying chemistry, the commercializing firm(s), the incentives that caused those firms to adopt the technology, and the role played by government support. Particular attention is paid to the identification of both near- and long-term benefits as well as to any barriers to technology adoption.

These case studies provide a review of the benefits and problems associated with NGETs. Taken together, they demonstrate the following:

1. NGETs can provide significant benefits to society in all the areas considered in our study: the environment, national security, occupational safety and health, and the economy.

2. NGETs can in some cases eliminate the use and generation of hazardous substances at little or no additional cost.
3. NGETs can be adopted by businesses for a variety of different reasons: to meet environmental regulations in a cost-effective way; to provide environmentally benign products economically; or to develop profitable new products in new and environmentally beneficent ways. NGETs provide new approaches to competitive advantage.

4. The barriers to the widespread use of NGETs can be technical, economic, and/or societal in nature.

This report represents a first step toward assessing the potential benefits of NGETs, reviewing the barriers to their successful deployment and pointing out where government actions have supported their successful adoption. Our case studies indicate that although green chemistry can be a powerful source of environmentally and economically beneficial technologies, its development is still in its infancy. Substantial work is needed both to create new NGETs and to encourage demand for their use. Much also remains to be learned about the basic science and practical application of green chemistry principles.
The authors are especially grateful to the many individuals who provided details or background on specific case studies, including Ruben Carbonell, North Carolina State University; Michael Stern and James Bashkin, Monsanto; Uma Chowdhry, Leo Manzer, Mas Subramanian, and Vasantha Nagarajan, DuPont; Akazu Takahashi, Ube Industries; Eric Beckman, University of Pittsburgh; Jeff Gendler and Ray Ballee, Hydrocarbon Technologies, Inc.; John Cooper, BASF; Nicholas Ashford, Massachusetts Institute of Technology; James Frank, Argonne National Laboratory; Robin Rogers, University of Alabama; David Berkowitz, Global Cooling; Vitaly Pecharsky, Ames Laboratory; Thomas Asmus, DaimlerChrysler; Michael Frenklach, University of California, Berkeley; Fred Cannon, Penn State; Mary Kirchhoff, Green Chemistry Institute; Richard Engler, U.S. Environmental Protection Agency (EPA); Ray Garant, American Chemical Society; Egils Milbergs and Jeff Keuter, National Coalition for Advanced Manufacturing; and Jack Cook, Integrated Manufacturing Technology Initiative.

We appreciated the invitations from the organizers of the 6th Annual Green Chemistry & Engineering Conference, the 2002 Green Chemistry Gordon Research Conference, and the First International Conference on Green & Sustainable Chemistry (Masao Kitajima, Makato Misono, and Shigetoshi Seta), where we could present portions of this report during its preparation.

We also thank colleagues at RAND and the Science and Technology Policy Institute for their helpful suggestions and support in preparing the report: Lisa Sheldone, Terry Kelly, Mihal Gross, Debra Knopman, and David Adamson.

A special thanks to Clifford Grammich, Paul Arends, and Nan Norling for their editing chores.

Finally, we wish to thank Dennis Hjeresen, Green Chemistry Institute; Tracy Williamson, EPA; and Richard Silberglitt, RAND, for their thorough reviews and their many thoughtful suggestions for additions, modifications, and corrections.

The statements and conclusions contained in this report are still the sole responsibility of the authors.
Acronyms

ABS Aqueous biphasic systems
ACQ Alkaline copper quaternary
ADPA Aminodiphenylamine
AND Adiponitrile
AO Advanced oxidation
AOX Absorbable organic halides
API Active pharmaceutical ingredient
BAC Benzyl ammonium chloride
Btu British thermal unit
CCA Chromated copper arsenate
CDI Capacitive Deionization
CFC Chlorofluorocarbon
Cl₂ Elemental chlorine
CO₂ Carbon dioxide
CPA Chloropropionic acid
DDAC Dodecyl dimethyl ammonium chloride
DMC Dimethyl carbonate
DME Dimethyl ether
DOE U.S. Department of Energy
DSIDA Disodium diimindociacetate
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECF</td>
<td>Elemental chlorine free</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>EPCRA</td>
<td>Emergency Planning and Community Right-to-Know Act</td>
</tr>
<tr>
<td>FDA</td>
<td>U.S. Food and Drug Administration</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
</tr>
<tr>
<td>GI</td>
<td>Glyphosate intermediate</td>
</tr>
<tr>
<td>GSC</td>
<td>Green and Sustainable Chemistry Network</td>
</tr>
<tr>
<td>GSK</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HCF</td>
<td>Hydrofluorocarbon</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrofluoric acid</td>
</tr>
<tr>
<td>HTI</td>
<td>Hydrocarbon Technologies, Inc.</td>
</tr>
<tr>
<td>IBB</td>
<td>Iso-butyl benzene</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>lbs</td>
<td>Pounds</td>
</tr>
<tr>
<td>MCF</td>
<td>Methyl chloroform</td>
</tr>
<tr>
<td>Mpa</td>
<td>Megapascals</td>
</tr>
<tr>
<td>MTBE</td>
<td>Methyl tert-butyl ether</td>
</tr>
<tr>
<td>N₂</td>
<td>Elemental nitrogen</td>
</tr>
<tr>
<td>NASH</td>
<td>Nucleophilic aromatic substitution for hydrogen</td>
</tr>
<tr>
<td>NESHAP</td>
<td>National Emission Standards for Hazardous Air Pollutants</td>
</tr>
<tr>
<td>NGET</td>
<td>Next Generation Environmental Technology</td>
</tr>
</tbody>
</table>
NIH National Institutes of Health
NO₂ Nitrogen oxides
NSF National Science Foundation
O₂ Elemental oxygen
OECD Organisation for Economic Cooperation and Development
PAA Polyaspartic acid
PCE Perchloroethylene
PDC Polycrystalline diamond compact
PEG Polyethylene glycol
PET Polyethylene terephthalate
PLA Polylactic acid
PMN Premanufacture notices
PO Propylene oxide
psi Pounds per square inch
R&D Research and development
RCRA Resource Conservation and Recovery Act
SCF Supercritical fluid
SCI Chemical Specialties, Inc.
SIC Standard Industrial Classification
SO₂ Sulfur dioxide
TCF Totally Chlorine Free
TRI Toxics Release Inventory
VOC Volatile organic compounds