The Taxes of Sin: Do Smokers and Drinkers Pay Their Way?

Willard G. Manning, Emmett B. Keeler, Joseph P. Newhouse, Elizabeth M. Sloss, Jeffrey Wasserman

March 1989
The research described in this report was supported by the Department of Health and Human Services, under the sponsorship of the National Center for Health Services Research and Health Care Technology Assessment.

This Note contains an offprint of RAND research originally published in a journal or book. The text is reproduced here, with permission of the original publisher.

The RAND Publication Series: The Report is the principal publication documenting and transmitting RAND's major research findings and final research results. The RAND Note reports other outputs of sponsored research for general distribution. Publications of The RAND Corporation do not necessarily reflect the opinions or policies of the sponsors of RAND research.
The Taxes of Sin: Do Smokers and Drinkers Pay Their Way?

Willard G. Manning, Emmett B. Keeler, Joseph P. Newhouse, Elizabeth M. Sloss, Jeffrey Wasserman

March 1989

Prepared for
The National Center for Health Services Research
and Health Care Technology Assessment
The Taxes of Sin
Do Smokers and Drinkers Pay Their Way?

Willard G. Manning, PhD; Emmett B. Keeler, PhD; Joseph P. Newhouse, PhD; Elizabeth M. Sloss, PhD; Jeffrey Wasserman, PhD

We estimate the lifetime, discounted costs that smokers and drinkers impose on others through collectively financed health insurance, pensions, disability insurance, group life insurance, fires, motor-vehicle accidents, and the criminal justice system. Although nonsmokers subsidize smokers' medical care and group life insurance, smokers subsidize nonsmokers' pensions and nursing home payments. On balance, smokers probably pay their way at the current level of excise taxes on cigarettes; but one may, nonetheless, wish to raise those taxes to reduce the number of adolescent smokers. In contrast, drinkers do not pay their way: current excise taxes on alcohol cover only about half the costs imposed on others.

(At this Department of Health Services Management and Policy, The University of Michigan, 420 Washington Heights, Ann Arbor, MI 48109)

METHODS

External Costs and Their Estimation

We illustrate our conceptual framework in terms of smoking, but the same principles apply to our analyses of drinking.

Table 1 illustrates the division between the internal and external costs of smoking. In the case of alcohol abuse, we also consider the costs of motor-vehicle accidents and criminal justice.

One goal of an economically efficient tax on smoking or tobacco is to have the smoker bear the costs that he imposes on others when deciding whether or how much to smoke. Costs imposed on other family members, however, are difficult to classify as internal or external because it is not clear whether those costs would, in any event, be taken into account by the smoker. If they would be, then they are internal costs. Although our base-case estimates classify such costs as internal, we show the effect of treating certain costs borne by other family members as external.

A simple example that considers only medical costs may clarify the division between internal and external costs. Suppose a worker has a group health insurance policy that pays 75% of his medical bills, and suppose that smoking a pack of cigarettes per day raises medical bills by $900. The amount the worker pays, $1500 (0.25 x $6000 = 1500), is a component of internal costs. Because the smoker does not pay higher premiums that reflect his or her higher costs, the remainder of the cost, $4500, is a component of external costs.

To estimate external costs, we should not contrast the medical and other expenses of smokers to nonsmokers, because nonsmokers differ from smokers in other ways that affect the various components of cost such as medical expenses. For example, according to the 1983 National Health Interview Survey (NHIS), those who never smoke are 1.6 times more likely than current smokers to have more than a high school education. Rather, we contrast smokers to a hypothetical group of “nonsmoking smokers,” people who are like smokers in age, sex, education, drinking habits, and several other ways described herein, except that they have never smoked. To test how sensitive our estimates are to differences between smoking and not smoking, however, we also contrast medical and other costs of smokers to those of actual nonsmokers.

Our method estimates lifetime costs by tracking expenditures for two hypothetical cohorts of men and women from age 20 years to death. One cohort smokes; the other does not. We develop life tables for each cohort showing the probability of surviving to each age from age 20 years. These tables are from applying estimates of the relative risk of smoking to the 1980 life tables of the US population. Relative risk was estimated by applying the 1984 Centers for Disease Control health risk appraisal program to the ever smokers in our sample twice—once with their actual smoking status and once with their smoking status changed to “never smoked.”

In judging any policy that has long-term effects, it is important to discount future costs, thereby making costs that occur at different times commensurate. A dollar received today is worth more than a dollar received 15 years from now (even without inflation). A current dollar can be invested and earn interest so that at the end of 15 years it will be worth more than $2 (at 5%). Because the proper rate of discount is controversial, we have computed results for rates that span the range between 0% and 10%.

The expected net external costs per pack are the sum of the immediate costs

From The University of Michigan, Ann Arbor (D. Manning); The RAND Corporation, Santa Monica, Calif (D. Manning, Keeler, Newhouse, Sloss, and Wasserman); the Division of Health Policy Research and Education, Harvard University, Cambridge, Mass (D. Newhouse); and Systems, Inc., Mountain View, Calif (D. Wasserman).

The opinions and conclusions expressed herein are solely those of the authors and should not be construed or cited as representing the policies or opinions of The RAND Corporation or any agency of the US Government or any of the individuals named herein.

Requests for reprints should be addressed to the Department of Health Services Management and Policy, The University of Michigan, 420 Washington Heights, Ann Arbor, MI 48109 (D. Manning).

per pack and the cumulating lifetime costs per pack. We assume that the costs of fires, motor-vehicle accidents, and criminal justice are immediate; i.e., each cigarette or ounce of ethanol has a certain probability of causing such costs in the immediate period after purchase, but once the cigarette is smoked or the alcohol consumed, the probability drops quickly to zero. For such costs, we divide estimated annual costs by the annual packs (or excess ounces). The cumulative net lifetime external costs are given by the following:

\[\sum_{t=0}^{\infty} \frac{1}{(1+r)^t} \times P(A|R_i) \times CH_i \]

\[\sum_{t=0}^{\infty} \frac{1}{(1+r)^t} \times P(A|NH_i) \times C(NH_i) \]

where \(r \) indicates the annual discount factor (1/(1+r)) if \(r \) is the discount rate; \(P(A|R_i) \) the probability of surviving from age 20 years to at least age \(t \) years, conditional on smoking; \(CH_i \), the annual costs minus taxes and premiums for smokers of age \(t \); \(P(A|NH_i) \), the probability of surviving from age 20 years to at least age \(t \) years, conditional on not smoking; and \(C(NH_i) \), the annual costs minus taxes and premiums for smokers of age \(t \) years if they had never smoked.

The external costs come from collectively financed programs, including health insurance, pensions, sick leave, disability insurance, and group life insurance. These programs are financed by taxes and premiums that do not differentiate between smokers and non-smokers. Because smokers have shorter life expectancies, they will pay less of the taxes and premiums that finance these programs. To modify the calculation of how much smokers and non-smokers pay annually to finance these programs, we assume that each pays the same proportion of earnings, where the proportion is just enough to finance these programs. The discounted, expected lifetime costs per pack are calculated by dividing the lifetime costs by the expected number of packs smoked in a lifetime.

In estimating the external costs of smoking and drinking, we relied on self-reported consumption. Because people underreport their consumption, we have corrected for the difference between actual and reported use. The reported number of packs per day was multiplied by 1.5, and reported alcohol consumption was multiplied by 2.5. Our figures for pension income have been corrected for a 21% rate of underreporting.

Our estimates are based on data from a number of sources. The primary source for those under age 60 years is The RAND Corporation's Health Insurance Experiment (HIE), because of its detailed information regarding habits and the medical reasons for the utilization of medical care. Because persons aged 62 years or older at the time of enrollment were excluded from the HIE sample of 5809 persons, we used data regarding persons greater than age 59 years from a 1983 supplement to the NHIS. It included information regarding health habits, health care use, and work loss in a sample of 22,418 persons. In addition, we compared the 1983 NHIS results for noneiderly persons with those from the HIE. We have inflated all cost data to 1986 dollars using the consumer price index.

We estimated differences in spending for medical care services between those with and without each habit. Such differences, of course, may or may not be caused by the habit. We addressed this ambiguity in two ways. First, we controlled for the confounding character-istics described in the next section. Second, although our base-case estimates include all medical services except maternity services and well care, we examined their sensitivity to considering only costs that arise from diagnoses thought to be directly related to smoking and excessive drinking, such as cancer of the lung and cirrhosis of the liver.

In addition to medical expense, we estimated the difference in days lost from work between persons with and without each habit, controlling for the confounding variables described herein. The collectively financed cost of days lost from work was computed by multiplying the daily wage by 0.38, the employees' average share of the cost of work loss through covered sick leave. When estimating the cost of drinking, we controlled for smoking status, and conversely. Had we not done so, we would have attributed some of the costs of smoking to drinking if smokers tend to drink heavily. We classified persons as former cigarette smokers, current cigarette smokers, current pipe or cigar smokers, and never smokers based on their responses to a smoking history questionnaire filled out at the time of enrollment in the study. We classified persons as abstainers, former drinkers, and current drinkers based on responses to the same questionnaire. We collapsed information regarding the current drinkers' consumption of beer.
wine, and spirits into a single variable—monthly consumption of ethanol in ounces. Within the category of current drinkers, heavy drinkers include those who report an average of two or more drinks daily (five or more actual drinks daily, with allowance for underreporting). Because light drinking may not be harmful, we calculate the cost per ounce in excess of two reported drinks per day. Thus, the drinking analogue of nonsmoking smokers are “controlled” heavy drinkers; i.e., we estimate the effect of hypothetically reducing the consumption of those with more than two reported drinks per day to two reported drinks per day.

Our base-case analysis also controlled for health insurance coverage, age, sex, race, education, the use of seat belts, family income, exercise, self-assessed measures of physical, mental, and general health, and family size. We included education and seat belt use to measure attitudes that may differ between those with varying health habits—attitudes that may affect work loss and use of medical services independently of smoking and drinking.

Pensions and Other Costs
In addition to the costs of medical care and work loss, we calculated the other components of cost shown in Table 1. Data regarding pension and disability payments by age, sex, and education status come from the Current Population Survey. That survey is also the source of earnings data, which we use to calculate taxes to finance the programs. Our estimate of annual property loss from fires that are associated with cigarette smoking is $840 million (in 1986 dollars). Because of fire insurance, we have assumed these costs are entirely external, but our estimates are not sensitive to this assumption.

Our estimates of certain annual external costs of alcohol abuse are as follows: property damage from motor-vehicle accidents, $3.6 billion; and from fires, $507 million; criminal justice, $3.1 billion; and social programs, $344 million.

It is extremely difficult, and to some distasteful, to place a dollar value on the innocent lives lost due to fires, passive smoking, or drunk driving. Nevertheless, it is often necessary, implicitly or explicitly, to place a value on lives lost when judging the merits of alternative policies, for example, policies leading to air pollution control or increased automobile safety. For this analysis, we include an explicit value for the lost lives to avoid the systematic undercounting of the costs to society that would occur if we included only the differences in use of medical care, sick leave, etc.

To define a value for innocent lives lost because of fires, passive smoking, and drunk driving, we used a method based on the willingness to pay for a small change in the probability of surviving. This yields a value of $1.66 million per life (around $10 per hour, using years of life expectancy discounted at 5%), considerably more than the value of the lost earnings. We believe earnings are an inappropriate measure of the value of life, in part, because they attribute a relatively low value to those who are out of the labor force.

RESULTS

Smoking

External Costs per Pack of Cigarettes.—If costs are not discounted, each pack of cigarettes increases medical costs by $0.38, but saves $1.53 in public and private pensions due to a 137-minute reduction in life expectancy. Overall, there is a net savings of $0.51 per pack in undiscounted costs (Table 2).

Results change markedly if costs are discounted at 5%, largely because pensions change from −$1.25 (at 5%) to −$0.24 (at 5%) per pack. Pensions are received late in life, so discounting dramatically decreases the differential between smokers and nonsmoking smokers. Using a 5% discount rate, the

Table 3: Sensitivity of External Costs (in 1986 Dollars) per Pack to Assumptions at 5% Discount Rate

<table>
<thead>
<tr>
<th>Costs/Per Pack ($</th>
<th>Base Case</th>
<th>All Data From National Health Interview Survey</th>
<th>Comparison With Never Smoker</th>
<th>Lower Bound</th>
<th>Total Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical care</td>
<td>0.26</td>
<td>0.26</td>
<td>0.20</td>
<td>0.15</td>
<td>0.36</td>
</tr>
<tr>
<td>Sick leave</td>
<td>0.01</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Group life insurance</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>Nursing home</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.03</td>
</tr>
<tr>
<td>Retirement pensions</td>
<td>-0.24</td>
<td>-0.24</td>
<td>-0.20</td>
<td>-0.24</td>
<td>-0.24</td>
</tr>
<tr>
<td>Fires</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Taxes on earnings per pack ($</td>
<td>-0.09</td>
<td>-0.09</td>
<td>-0.09</td>
<td>-0.09</td>
<td>-0.09</td>
</tr>
<tr>
<td>Total net cost per pack ($)</td>
<td>0.15</td>
<td>0.20</td>
<td>0.20</td>
<td>0.15</td>
<td>0.35</td>
</tr>
</tbody>
</table>

*Effect of changing current and former smokers to never smokers, with other characteristics held constant.

**Falls of medical costs, with no effects of smoking on early retirement.

includes internal costs.

includes disability insurance.

Value shown is nonsmoking smoker's differential; never smokers actually pay $0.51 cents more earnings taxes than smokers per pack because of higher earning rates, but it is implausible that their higher earning rates are causally related to smoking, and we have assumed they are not.

**Earnings, not taxes on earnings.

Sum of costs minus taxes on earnings.

**Loss of life and pain and suffering by smoker and family not included: see text.
total external costs per pack are $0.15, and they rise to $0.24 per pack at a 10% discount rate. The main reason these results are so much lower than, for example, the estimate from the Office of Technology Assessment of $2.17 per pack (unpublished data, 1985) is our exclusion of changes in lifetime earnings from smoking, which are internal costs.

Table 4 - External Costs of Heavy Drinkers per Excess Ounce*

<table>
<thead>
<tr>
<th>Discount Rate</th>
<th>0%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical and pension costs per excess ounce, $</td>
<td>0.26</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>Medical care</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Sick leave</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Maternity/life insurance</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Nursing home</td>
<td>-0.04</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Retired person</td>
<td>0.35</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Taxes on earnings, $</td>
<td>0.63</td>
<td>0.28</td>
<td>0.15</td>
</tr>
<tr>
<td>Motor-vehicle accidents and criminal justice costs per excess ounce, $</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>Lives of nondrinkers</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Other costs</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Total net costs per excess ounce, $</td>
<td>1.58</td>
<td>1.19</td>
<td>0.99</td>
</tr>
</tbody>
</table>

*Costs (in 1986 dollars) per excess ounce are calculated by dividing by the discounted number of excess ounces.

Heavy Drinking

External Medical and Pension Costs per Excess Ounce of Alcohol

Using undiscouned values, each excess ounce of alcohol, i.e., those consumed in excess of two reported drinks per day, has external medical and pension costs of $0.68 and causes a loss of 20 minutes of life expectancy (Table 4, column 1). At a 5% discount rate, external medical and pension costs per excess ounce fall to $0.26. In contrast to smoking, heavy drinking increases all categories of costs (at a 5% discount rate), even pensions, because the large effects of early retirement, which triggers pension and disability payments, outweigh the shorter life of drinkers. At a 10% rate of discount, medical and pension costs fall to $0.15 per excess ounce.

Before discussing the other costs of drinking shown in Table 4, we describe the sensitivity of our estimates of medical and pension costs to different assumptions (Table 5). For convenience, the first column of Table 5 repeats the results from Table 4 for a 5% discount rate. Medical and pension costs are not sensitive to the source of data (Table 5, column 2), nor do they change much if we compare heavy drinkers with actual abstainers and light drinkers rather than hypothetical controlled drinkers (cutting back to two reported drinks per day among those consuming more than that amount) (Table 5, column 3), nor do they change when drinking is not treated as a cause of disability retirement (Table 5, column 4).

Restricting medical costs to those arising from diagnoses thought to be related to poor health habits makes virtually no difference to our estimates (Table 5, column 4), implying that the
medical costs shown in the first column are largely due to differences in medical use that are related to habits. In contrast, the external costs of smoking are sensitive to the definition of relevant medical costs, suggesting that the broader definition of smoking effects may overstate medical costs and total external costs.

Other External Costs.—Although our estimates include the additional probability that a drinker will be killed in a traffic accident, they do not account for the deaths of innocent bystanders and nondrinking passengers in such accidents. The Department of Transportation estimates that about 7400 of the 22,400 people who died in alcohol-related traffic accidents in 1985 were not drinking. Based on a willingness to pay for a human life of $76,660 and the estimated volume of drinking from the 1983 NHIS, the value of the 7400 lost lives is $50.68 per excess ounce of ethanol (Table 4, bottom). This figure is low because it does not include medical, disability, and suffering costs of surviving nondrinking victims of alcohol-related accidents. On the other hand, the figure is high to the extent that not all drinking-related accidents are caused by alcohol.

In addition, there are annually $7.2 billion of other costs described previously herein, principally costs of the criminal justice system and property damage in alcohol-related motor-vehicle accidents. These costs add another $0.35 per excess ounce.

Sensitivity of Results

Although $0.15 per pack of cigarettes and $1.19 per excess ounce of alcohol are our best estimates of the external economic costs of smoking and heavy drinking, the values are sensitive to four factors: discount rate, value assigned to lives lost in drunk driving-related accidents, amount of underreporting, and treatment of persons who die of causes related to passive smoking and fires.

Discount Rate.—The sensitivity to the discount rate is more pronounced with smoking, where the estimated external costs would be almost $0.20 lower per pack if we used a 3% rather than a 6% discount. The sensitivity of drinking costs to discounting is much less. For smoking, consumption starts early, but deaths come much later in the case of drinking. The shorter the time between consumption and death, the less sensitive the estimates are to discounting.

Dollar Value of Life.—Because the assumed value of life is on the low end of estimated values, our estimates of drinking costs are conservative.

Underreporting.—Assuming that the reported level of consumption were closer to the actual level of consumption would raise our estimates of the external cost, because we would inflate the level of reported packs and ounces by a smaller factor when computing costs per pack and ounce. For example, had we assumed respondents reported 90% of their actual alcohol consumption, we would only have multiplied reported ounces by 1.67 (1/0.60) rather than 2.5 (1/0.40) to estimate actual ounces, and the estimated cost per excess ounce would be 50% (2.5/1.67 = 1.5) higher. In the case of alcohol, our cost estimate is conservative because the 40% figure we used is at the low end of the estimates found in the literature. Within-Family Costs.—We ignored costs of $0.23 per pack associated with deaths caused by passive smoking and fires because we assumed they were in the family and taken into account by the smoker. Defining these costs as external would more than double our estimated external cost of smoking.

Our estimates are relatively insensitive to other assumptions. Because the external costs of drinking are dominated by costs associated with drunk driving, such costs are relatively insensitive to discounting (Figure). The choice of data used to estimate effects (HDE vs NHIS) has little effect on the results.

Our estimates of the external costs of alcohol were made per excess ounce, but excise taxes apply per ounce, not per excess ounce. Forty percent of total consumption represents ounces in excess of two reported drinks per day (five actual drinks per day, given our estimate of underreporting). To convert our figures per excess ounce to figures per ounce, one should multiply them by 0.4, reducing the estimated cost of $1.19 per excess ounce to $0.48 per ounce.

Our estimate of the external cost of smoking, $0.15 per pack, is well below the current average (state plus federal) excise and sales taxes of $0.37 per pack ($0.32 of the $0.37 are excise taxes). However, the $0.37 tax rate approximately equals the estimated external cost of $0.33 if we were to treat all lives lost to passive smoking and fires as external costs. By contrast, our estimate of the external cost of alcohol, $0.48 per ounce, is well above the current average (state plus federal) excise and sales taxes of $0.23 per ounce. (The average excise tax is taken across distilled spirits, wine, and beer, where the excise taxes are $0.25, $0.03, and $0.09 per ounce of ethanol, respectively.) Thus, smokers probably pay enough taxes to offset the net costs they impose on others, but heavy drinkers do not.

We noted in the introduction that economically efficient excise taxes should at least cover external costs. By this criterion, taxes on alcohol are too low; whether cigarette taxes are high enough depends on one's appraisal of three other arguments for taxation of cigarettes and alcohol. (Each of these arguments would further strengthen the case for increasing alcohol taxes.)

The first argument takes cognizance of the regret expressed by most smokers and their attempts to quit. Smoking tends to start in adolescence or early adulthood, at a time when individuals are not well informed and may not appreciate the consequences of their actions. Cigarettes (and alcohol) are addictive, so it is more difficult to quit than to avoid starting the habit. Because over 85% of smokers begin smoking before age 20 years and some evidence...
suggests that the proportion of those under 20 years of age who smoke is sensitive to taxes. Higher taxes may decrease the number of individuals who become addicted.

Some may see this argument as paternalistic, but it is not, if judged by the tastes of the individual attempting to quit; those tastes arguably determine the economically efficient tax. If the loss in life expectancy of 28 minutes per pack is relevant to economic efficiency because of later regret, an economically efficient tax would be on the order of $5 per pack, the estimated value of the 28 minutes.

A second and related reason to tax cigarettes is that many adults do not appreciate the risks. Despite the warning labels on cigarettes, 20% to 25% of adult smokers say they do not know the risks of smoking. A higher tax would deter initiation of smoking, thus compensating for any undervalued risk.

A third reason to add tax to addictive commodities is that such taxes are likely to lead to a relatively small change in behavior among those already addicted. Suppose, for example, there were no external costs, no ignorance, and no regret associated with smoking. From the point of view of raising revenue, it may still be wise to tax cigarettes because it is preferable to tax items for which the behavior does not change; there is less induced inefficiency. This argument could also justify higher cigarette taxes than at present.

Despite the uncertainties surrounding our estimates, in the case of alcohol, the difference between the actual tax and external costs is so large that, in our view, a strong case can be made for an increase in federal alcohol taxes. The tax on beer, wine, and spirits raises 75% of the federal tax on tobacco, but less than 20% of the federal tax on tobacco. The case is especially strong for raising taxes on alcohol because consumers are more likely to perceive the cost of alcohol as a burden.

Second, because excise taxes must be proportional to consumption, the higher costs of smoking and drinking are not proportional to consumption, there will be, in practice, a tax that does not leave someone subsidizing someone else. The task of determining how such subsidies will flow to our political institutions. We hope our estimates contribute to more informed decisions.

This work was supported by grant ROI-HS-05373 from the National Center for Health Services Research and Technology Assessment.

We thank Thomas Vogt, MD, Robert Leu, PhD, and Bernard Friedman, PhD, for suggestions and guidance; Robert Amiel, MD, for help with the Health Risk Appraisal model; Kenneth Warren, PhD, Charles Phelps, PhD, James L. Usan, PhD, Bridger Mitchell, PhD, and Jim Smith, PhD, for careful reviews; Bernadette Benjamini and Janet Halley, MS, for programming and data management; Joyce Pearson, PhD, for editorial assistance; and Stephen Marcus, PhD, and Selwyn Waitrow for their support, comments, and advice.

References

8. FYMA Special Report to the US Congress on Alcohol and Health From the Secretary of Health and Human Services. US Dept of Health and Human Services, 1983.