Bayesian Inference for the Distribution of Grams of Marijuana in a Joint

Published in: Drug and Alcohol Dependence, v. 165, 1 Aug. 2016, p. 175-180

Posted on RAND.org on July 14, 2016

by Greg Ridgeway, Beau Kilmer

Read More

Access further information on this document at Drug and Alcohol Dependence

This article was published outside of RAND. The full text of the article can be found at the link above.

Background

The average amount of marijuana in a joint is unknown, yet this figure is a critical quantity for creating credible measures of marijuana consumption. It is essential for projecting tax revenues post-legalization, estimating the size of illicit marijuana markets, and learning about how much marijuana users are consuming in order to understand health and behavioral consequences.

Methods

Arrestee Drug Abuse Monitoring data collected between 2000 and 2010 contain relevant information on 10,628 marijuana transactions, joints and loose marijuana purchases, including the city in which the purchase occurred and the price paid for the marijuana. Using the Brown–Silverman drug pricing model to link marijuana price and weight, we are able to infer the distribution of grams of marijuana in a joint and provide a Bayesian posterior distribution for the mean weight of marijuana in a joint.

Results

We estimate that the mean weight of marijuana in a joint is 0.32 g (95% Bayesian posterior interval: 0.30–0.35).

Conclusions

Our estimate of the mean weight of marijuana in a joint is lower than figures commonly used to make estimates of marijuana consumption. These estimates can be incorporated into drug policy discussions to produce better understanding about illicit marijuana markets, the size of potential legalized marijuana markets, and health and behavior outcomes.

This report is part of the RAND Corporation external publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.