An overseas presence strategy is a key issue that must be addressed by the Air Force in its evolution to an EAF. During crises and contingencies, operating locations within a region are essential for commanders to have the flexibility and responsiveness they need to manage rapidly unfolding events. In addition, during peacetime, overseas presence provides stability, deterrence, and the capability to shape the security environment favorably. In this chapter, we describe an approach to the base access question that we call flexbasin. The essential elements of this strategy are not new. It does, however, bring together in one concept much of the current thinking about overseas presence, base access, new regional support concepts, “bomber islands,” and the role of space. We propose that the Air Force take a global view of support for aerospace power projection, and that a global basing strategy will be as important to the EAF concept as was the CONUS-basing of bombers during the Cold War.

BASES IN THE WRONG PLACES

It is not surprising that the basing structure designed to support U.S. strategy during the Cold War is not aligned to meet the unpredictable and varied threats of today. The Air Force’s base structure at the end of that experience was shaped by a combination of political, economic, and military forces, resulting in essentially two sets of bases. One set was centered on Europe to support NATO, the other in Japan and South Korea to back up the bilateral security agreements with those two countries. In 1981, there were 41 of these bases in the wrong places.
bases. Today, this number has been drawn down to 13, concentrating on Western Europe and Northeast Asia. These remaining bases are shown in Figure 2.1, overlaid with circles or ellipses showing major areas of instability. Also shown is a sampling of sites where the Air Force has had to conduct operations on a temporary or rotational basis since 1991. This illustrates in plain terms the “expanded strategic perimeter” described earlier, and that the old basing model of conducting operations directly from MOBs is not supporting Air Force operations as well as in the past. Building new MOBs in the many areas of instability around the world is neither affordable nor politically realistic. A new approach to overseas presence is needed that can provide true (not “virtual”) presence, and that can address the demands of the widened U.S. security perimeter.

Figure 2.1—USAF Overseas MOBs and Regional Instability, 1999
MEETING THE CHALLENGE OF AN EXTENDED SECURITY PERIMETER

In the past, the great powers that successfully faced this type of security challenge used the following types of capabilities:\(^1\)

- Economy of force
- Global awareness (intelligence)
- Advanced command, control, and communications
- Rapid mobility
- Advanced logistics
- Cultivation of regional partners.

Economy of force was achieved by centrally marshaling forces in secure areas. Good intelligence about the frontier area, combined with rapid communications and decisionmaking capabilities allowed threats to be identified and prioritized. Rapid mobility and logistics capabilities allowed forces to be moved swiftly to where they were needed and sustained for as long as necessary. Finally, regional friends and allies often allowed the threats to be handled locally, without military action from the center.

It is remarkable how closely these capabilities—needed for security in the next century—correspond with the capabilities and core competencies of today’s Air Force. Richard Kugler has written extensively about the demands that the broadened strategic perimeter place on the United States, and says of the Air Force,

USAF forces appear well situated to play roles of growing importance in the coming years. Both agile and well-armed, USAF forces, more than any of the other services, can project power over long distances quickly when bases and infrastructure are available to receive them.\(^2\)

\(^{1}\)For relevant historical examples, see Luttwak (1976), and Kennedy (1983).

The key is infrastructure. Kugler recommends that as part of the implementation of the U.S. engagement strategy there be a high-priority effort to establish a network of reception facilities in the “outlying areas” of strategic instability. These often low-profile facilities would provide prepositioned equipment and spare parts to enable the rapid projection of aerospace power.

By developing a large network of these bases, USAF forces could quickly deploy to many new locations, thus providing an early reaction capability in the critical period before U.S. ground and naval forces can arrive in strength.\(^3\)

Kugler calls these facilities deployment operating bases. We call them forward support locations (FSLs) and forward operating locations (FOLs); they represent just a part of the flexbasing strategy. Another part is a hedging approach to access—that is, multiple low-cost deployment sites identified throughout a theater, spread over different countries and geographic areas.

FLEXBASING AND ASSURED ACCESS

The concepts underlying flexbasing are not new. In addition to Kugler, the Air Force Scientific Advisory Board in its 1997 study of expeditionary operations spoke of the need to establish “regional contingency centers” at which support equipment and spares could be positioned.\(^4\) General John Jumper, who fathered the idea of expeditionary aerospace force packages when he was commander of Air Force forces in Southwest Asia, addressed the access issue by establishing five possible deployment locations in the region, in five countries. In a related concept, others have talked of regional “bomber islands,” at which long-range aircraft could be positioned for possible employment throughout a theater. What is new about flexbasing is the realization that the combination of all these ideas represents a useful approach to the access issue. Advanced logistics and mobility support concepts, combined with a robust mix of long-

\(^3\)Kugler (1998), p. 133.

and short-range combat systems, space systems, and new approaches to planning, converge to solve the access issue.

Flexbasing replaces the concerns about achieving an elusive assured access around the world with a robust capability to go swiftly and easily into whatever base, airport, or remote airfield becomes available. Few, if any, sovereign countries are likely to give before-the-fact, blanket permissions for combat operations to be conducted from their territories. However, in general, if there were no friendly countries in a region whose security was being threatened, it would be unlikely that the United States would have reason to deploy forces. If friendly countries were being intimidated into denying access, or doubted U.S. resolve, the Air Force would retain the capability to operate from a distance until closer operating locations became available.

THE ELEMENTS OF FLEXBASING

Although complex cost and operational tradeoffs remain on the details of the flexbasing concept, our analysis indicates that the concept has essentially six elements. The actions shown in Figure 2.2 would be necessary to implement the flexbasing strategy for global presence.

Establish a Global System of Tiered Locations

The three types of locations in the flexbasing approach are core support locations (CSLs), FSLs, and FOLs. Briefly, core bases are represented by the CONUS and overseas MOBs operated by the Air Force, FSLs are sites for storing materiel to facilitate deployments throughout a particular region, and FOLs are possible deployment sites in a region. For each type of base, the hedging strategy is applied to ensure that there are multiple options to accomplish the Air Force mission in each region—each identified and anticipated. A possible structure of CSLs, FSLs, and FOLs is shown in Figure 2.3. MOBs (CSLs) on sovereign U.S. territory are clearly the most desirable in terms of access; the remaining overseas MOBs are spread over a number of countries. The situation is best in Europe, where the MOBs are located in a range of allied countries—the United
- Establish a global system of tiered locations: core, FSLs, and FOLs
- Maintain a robust mix of long- and short-range weapon systems
- Develop earth orbit as a forward support location
- Advocate global presence strategy as a joint goal, supporting and supported by *shaping*
- Design and establish a global logistics/mobility support system
- Incorporate full-spectrum force protection into basing strategy

Figure 2.2—Elements of Flexbasing

Figure 2.3—Notional Flexbasing Concept
Kingdom, Germany, Italy, and Turkey. The situation is more problematic in East Asia, where MOBs exist only in Japan, South Korea, and Guam. In addition, the forces in Japan and South Korea are focused on the deterrence of North Korea. The projection of aerospace power in this region may seem troublesome, but the Air Force should reconsider the advantages of Guam as a CSL for support of the flexbasing strategy. It is well positioned with respect to force protection, and provides an ideal location for the employment of long-range bombers throughout Southeast Asia. Alternatively, Guam could be developed as an FSL, which would allow it to be used for periodic (not continuous) deployments by forces from the forward-deploying parts of the CONUS-based AEFs. This would demonstrate U.S. commitment to the security of the region and would enhance expeditionary training. It would also allow smaller demonstration and training visits to FOLs throughout the region, thus actively supporting the shaping strategy without taxing PACAF forces. The Air Force should consider the buildup of Guam as a key support location for the projection of aerospace power in Southeast Asia.

The general functions served by the three types of locations in support of the flexbasing strategy are shown in Figure 2.4. The categorization is based on the investment in infrastructure and deployable support equipment at the site. Core base functions will overlap those performed by the FSLs, thereby providing a long distance backup in case of delays in accessing an FSL in a region.5

The FSLs, an important aspect of the flexbasing concept, provide regional storage sites for support infrastructure, as well as locations at which to beddown bombers, tankers, and other enabling assets (e.g., AWACS, JSTARS, Airborne Laser, and theater airlift). During peacetime, these locations could provide a low-profile presence, possibly involving only warehouses tended by contractors with periodic inspections by Air Force personnel. Given enough deployment time, all of the supporting equipment and munitions positioned at FSLs

5Access to the bases in the support system will vary, and it may well be that certain FSLs (e.g., Guam, Diego Garcia) may provide greater access than some core bases (e.g., Kadena). The overall regional access capability must be considered. Certain core bases may need to be backed-up with equipment and munitions stored at FSLs.
could come from the core bases. However, it is the regional positioning of this equipment at FSLs that allows the rapid deployment and employment of combat aircraft within a matter of hours or days. The FSL capability to support the deployment and sustainment of AEF force packages is discussed in the next chapter.

The FOLs are stocked with prepositioned equipment and munitions according to the level of responsiveness desired. Category 1 FOLs are the most responsive, having the capability to support combat operations within 48 hours of the initial deployment order. To achieve such responsiveness, most of the munitions, vehicles, fuel storage systems, and other supporting equipment must be in place before the forces arrive. Therefore, Category 1 FOLs represent a relatively expensive capability, and would be set up only in regions of vital U.S. interest. Category 2 and Category 3 FOLs are not as responsive and cost substantially less. Category 3 FOLs, in fact, would require only the minimum of in-place support, at (probably) little or no cost to the United States. The keys to moving swiftly into these types of locations will be the regional positioning of equipment at the FSLs.

Figure 2.4—Flexbase Functions

<table>
<thead>
<tr>
<th>Core</th>
<th>FSL</th>
<th>FOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Home basing of forces</td>
<td>• Repair facilities</td>
<td>• Category 3</td>
</tr>
<tr>
<td>• Repair facilities</td>
<td>• WRM storage</td>
<td>– Runway</td>
</tr>
<tr>
<td>• War reserve materiel (WRM)</td>
<td>• Munitions storage</td>
<td>– Ramp space</td>
</tr>
<tr>
<td>• Munitions</td>
<td>• Base support package</td>
<td>– Fuel</td>
</tr>
<tr>
<td>• Base support package</td>
<td>• Force protection equipment storage</td>
<td>– Water</td>
</tr>
<tr>
<td>• Force protection equipment</td>
<td>• Bomber forward basing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Asset basing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Airlifter/tanker enroute support</td>
<td></td>
</tr>
</tbody>
</table>

- Category 1 plus:
 - Arresting system
 - Communications
 - Munitions (3 days)
and the prior accomplishment of the necessary surveys and Base Support Plans (BSPs). Although the development and updating of a large number of such plans would represent a substantial effort, the payoff would be enormous. In the next chapter, we will describe some automated tools in development to support this requirement.

Maintain a Robust Mix of Long- and Short-Range Combat Capabilities

The Air Force could address the basing issue, as well as the problem of force protection, by relying almost exclusively on long-range weapon systems—bombers and cruise missiles. There are, however, some difficulties with this idea. The Long Range Airpower Panel, in a 1998 congressionally mandated study, concluded that bombers by themselves could not achieve the sortie rates needed by a CINC during high-intensity operations. In addition, for nonstealthy B-52s and B-1s to operate over hostile territory, local air superiority is needed, as well as suppression of enemy air defenses (SEAD). Fighter aircraft currently accomplish these missions, and these aircraft would need to be deployed forward. Finally, in a rapidly changing situation, mobile targets may need to be hit quickly. Today’s cruise missiles are effective only against fixed targets, although this could change in the future.

Bombers are, however, an essential expeditionary capability and are important in the flexbasing strategy. Potential host countries often seek evidence of U.S. commitment to “go the distance” in a military operation before providing access. If they observe a continuing series of bomber strikes, potential coalition partners are less likely to be intimidated by a local aggressor and more likely to approve U.S. access to forward bases. Similarly, in the case of punitive strikes or show of force operations, from which friendly regional states may wish to distance themselves, the Air Force would be able to quickly deploy long-range systems to pre-stocked FSLs and launch the op-

6Welch (1998).
7We note that sea-based fighter aircraft could also provide enabling capabilities to support long-range bomber strikes. Such joint solutions should be considered and balanced against the cost of providing support for the deployment of land-based fighters.
eration with a minimum of additional deployed assets. In essence, the flexbasing strategy rests on the concept of having multiple basing and employment options. A mix of long- and short-range weapon systems is a vital aspect of achieving such flexibility.

Develop Earth Orbit as a Forward Support Location

The Air Force should think of space not as a medium to be traversed but as a forward location to support expeditionary operations. Earth orbit, although constrained by Kepler’s laws, is an omnipresent forward base located only 200 miles from any area of operations. Space also affords excellent access, and space operations represent a comparative advantage for the United States. Some of the functions that could feasibly be supported from space are:

- Rapidly launched “mini-Milstars” for protected AEF communications
- Rapidly launched or electro-optical satellites
- Space-based lasers for SEAD
- Space-delivered kinetic-kill reentry vehicles for SEAD
- Space-based surface-to-air missile (SAM) radar jamming for SEAD
- Space-based ground moving-target indicator/side-looking airborne radar (GMTI/SAR) for AWACS/JSTARS sensing.

Much of the difficulty in rapidly deploying and employing AEF force packages relates to the array of “enablers” that must also go along to allow successful combat operations. The types of systems listed above could provide many of these functions, such as a communications surge capability, space-based sensing, and SEAD. A high-leverage force enhancement would be the capability to provide AWACS- and JSTARS-like sensing and tracking from space. One program that holds promise in providing these capabilities is the Discoverer II program, which is jointly managed by the Air Force, the Defense

8Some of this material is taken from Daniel Gonzales and colleagues, “Implications of reusable space systems for Air Force space operations,” RAND, internal draft, 1999.
Advanced Research Projects Agency (DARPA), and the National Reconnaissance Office (NRO). This program has the objective of developing and launching two satellites by 2004 to demonstrate the feasibility of providing stereoscopic AWACS- and JSTAR-like sensing from space. In addition, the satellites are planned to provide digital terrain elevation data (needed for low-level mission planning). All data would be provided directly to deployed expeditionary forces via downlinks. Analysis indicates that a constellation of 24 of these satellites could provide instantaneous and near-continuous surveillance of any place on the earth’s surface or in the atmosphere.

Moving more of the Air Force mission into space does present some considerable challenges, however. Agreements such as the Space Treaty and the Anti-Ballistic Missile Treaty could constrain weapons-related missions from orbit. However, just being able to accomplish many of the sensing and reconnaissance missions from space would lower the support footprint of deploying AEF packages considerably. Another obstacle is the considerable cost of developing, fielding, and maintaining these systems. These costs need to be balanced against the cost and operational effectiveness of similar atmospheric platforms.

Still, with some enabling functions performed from earth orbit, substantially fewer personnel and aircraft would need to be deployed forward. Expeditionary aerospace forces could become more agile and light, and the deployment burden on “low density/high demand” assets such as AWACS could be resolved. In addition, without the need for in-theater/in-atmosphere supporting platforms, bombers could possibly operate with more independence, enhancing the long-range application of aerospace power from core bases and FSLs.9

Advocate a Global Presence Strategy

Any strategy for the global projection of U.S. combat power must be a joint and even national strategy. For example, the positioning of theater-assigned equipment at FSLs and the collection of data on

9Project AIR FORCE’s “Extended Range Airpower Study” is examining options for enhancing the long-range application of airpower.
possible FOLs would need to be endorsed and instituted by the regional CINCs. Agreements for establishing FSLs would require negotiations by the State Department. Nevertheless, it is also true that many aspects of the EAF concept itself will need buy-in and endorsement by the Joint Staff and the regional CINCs, especially with respect to the integration of AEF force packages into operations plans (OPLANs) and other contingency plans that are developed by these players. The Air Force could pursue a global basing policy as an initiative at the joint level, as it pursues other initiatives related to implementing the EAF concept.

Clearly, any overseas military presence policy would need to become a corollary of our overall military strategy. We recommend that such a policy be presented to the joint community as part of the EAF initiative, as advantageous for all the services. FSLs would not be reserved for Air Force use only. All services could use them for locating repair facilities or for positioning support equipment. For the CINCs, the strategy provides better access and would allow quicker response during crises.

Another attractive aspect of flexbasing is that it would be a tangible objective of the shaping aspect of our military strategy. Shaping activities such as military-to-military contacts and training with coalition partners are chronically underfunded, partly because it is difficult to demonstrate the benefits of these activities. Additionally, engagement activities such as these are today conducted at the initiative of the CINCs, without overall funding, policies, or objectives established by the Department of Defense.10 If one aspect of shaping were defined as the pursuit of a global military presence policy, it would be easier to perceive the benefits. Figure 2.5 presents some of the possible benefits of shaping, as applied to the flexbasing strategy. With measures of effectiveness such as these, a case could be made for better funding of these activities if the results in a particular theater were not up to expectations.

10Davis (1997), p. 37.
Design and Implement a Global Agile Combat Support/Mobility System

We have already alluded to many of the logistical aspects of the flexbasing strategy. Innovative logistics and mobility concepts will be the *sine qua non* of a global presence strategy for the Air Force. We recommend that attention be given to the design and implementation of an integrated logistics and mobility support system for expeditionary aerospace forces. Additionally, we recommend that this be done on a global basis, not region-by-region. Such a system will be discussed in the next chapter.

Implement Full-Spectrum Force Protection

Another key enabler of an expeditionary basing policy is a force protection capability that addresses the full spectrum of possible threats. Without highly effective and deployable force protection, AEF force packages would not be able to take advantage of the full array of available FOLs. Indeed, they might not be able to move forward at all, defeating the basing strategy. This will be addressed in Chapter Four.
In the near term, we believe that the last two aspects of the flexbasing strategy are the keys to its implementation. Flexibility, the key to the strategy, is provided by a powerful logistics capability to deploy to wherever expeditionary aerospace forces need to go and by not being precluded from going there by enemy threats.