Based on our preliminary results, we can begin to envision an evolving ACS/mobility system that will support expeditionary operations over the foreseeable future. The system would be global and have elements forward-based (or at least located outside of CONUS). Figure 4.1 gives a notional picture of what such a support system would look like. The system aims to be geographically robust (cover the globe) and concentrates some facilities in areas of current national security concern (SWA and Korea).

The system has five components:

1. FOLs. Some bases in threatened critical areas should have equipment prepositioned to enable rapid deployments of heavy combat aerospace packages. The FOLs might be augmented by other, more austere FOLs that would take longer to spin up. In other parts of the world, the FOLs might all be of the second form if conflict is not likely or if humanitarian missions will be the norm.

2. FSLs. FSLs are sites near or within an area of responsibility (AOR) that serve as places to store munitions for WRM or as places for consolidated maintenance and other support activities. The configuration and specific functions of FSLs depend on their geo-

---

1Components 4 and 5 are the subject of ongoing RAND research and will be dealt with comprehensively in future reports. We note especially that assured transportation is a contentious issue. By doctrine, the CINC controls theater distribution and airlift resources are limited (much is in the Reserve or Guard), which adds an additional complication to lengthy operations.
Figure 4.1—Notional Global ACS Network

graphic location, the threat, and the costs and benefits of using current facilities. Western and Central Europe are currently stable and secure, and it may be possible to support operations in areas such as SWA or the Balkans from FSLs in these areas.

3. CSLs. CONUS depots are one type of CSL, as are contractor facilities. Other types of CSLs may be analogous to FSLs. Such support structures are needed to support CONUS forces because some repair capability and other activities may be removed from units. These activities may be set up at major Air Force bases, convenient civilian transportation hubs, or Air Force or other defense repair and/or supply depots.

4. A transportation network connecting FOLs and FSLs with each other and with CONUS, including en route tanker support. This is essential; FSLs need assured transportation links to support expeditionary forces. FSLs themselves could be transportation hubs.

5. A logistics command and control (C2) system. To coordinate the ACS/mobility system—to organize transport and support ac-
tivities—and to allow the system to react swiftly to rapidly changing circumstances, we believe that a C2 system would be needed, because many support resources would not be under the direct command of the supported units.

The configuration of these components will depend on numerous factors. The system’s primary focus should be on areas of vital U.S. interests that are under threat. Figure 4.2 shows a notional configuration of FOLs and FSLs to support the Caucasus region. In this hypothetical situation, some FOLs have been designated as 48-hour FOLs to receive initial forces and commence operations immediately. Other FOLs have longer timelines for employing forces. In other areas, the threat may not be time-critical (e.g., it does not include armored attack over an unobstructed corridor), so the FOLs may be 96-hour bases or 144-hour bases. Actual locations will depend on factors such as in-place infrastructure and force protection, political aspects (e.g., access to bases and resources), and how site locations affect future alliances and host-nation relationships. The analytical framework introduced here needs to be expanded and linked with methods for taking these additional issues into account.

Figure 4.2—A Notional FOL/FSL Configuration to Support the Caucasus Region
We emphasize that this potential structure and our key findings are dependent on the characteristics of the force and support processes. Our findings to date are driven to a large extent by the characteristics of the current force and support processes. As new policies and practices are formulated and implemented, as the Air Force gains experience with expeditionary operations, and as new technologies for ground support, munitions, shelter, and the like become available, many of these decisions will need to be revisited and the support system configuration adjusted to reflect the new capabilities. Improvements in transport times, weight, and equipment reliability may shift the balance in favor of supporting operations from CONUS and shrinking the network of FSLs.

An advantage of the analytic framework is that it helps to focus research and attention on areas where footprint reductions could have big payoffs. Munitions is a key example: Reductions in weight and assembly times could pay large dividends in speed of deployment. For operations at bare bases, shelter is also crucial and heavy. Changes in these areas will not be made immediately, however, and the structure outlined above will enable expeditionary operations in the immediate future.

From these analyses, and the preliminary results of others in progress, we infer that expeditionary operations with the current force and with current support processes requires judicious prepositioning of equipment and supplies at selected FOLs, backed by a system of FSLs that can provide equipment storage and maintenance services. Such a system would also require a transportation system to link the FOLs and FSLs.

Peacetime cost is an important concern in our analysis. The new support concept may help contain costs by consolidating assets, reducing deployments for technical personnel (who could be assigned to FSLs for tours of duty), using host-nation facilities, and possibly sharing costs with allies. Further, considerable infrastructure including buildings and large stockpiles of WRM may already be available in developed areas such as Europe.