Developing an ACS/mobility system that can best support EAF operations requires many decisions about prepositioning, the location of FOLs and FSLs, and the location of various support processes. Figure 5.1 shows an expanded view of our analytic framework in which the outputs from the individual models of Figure 1.1 are combined to produce candidate integrated support postures for all resources.

Strategic plans for ACS/mobility must be both global and evolving. A global perspective, not one focused on an individual theater, is needed because the tradeoff among cost constraints, political considerations, and support characteristics may dictate that some support for a particular theater or subregion be provided from facilities in another. This is not a theoretical point: Because much of the critical SWA theater is politically volatile, support to that region might better be provided from outside (as indeed, some is now from bases in Europe and on Diego Garcia Island, which is part of the Pacific theater). The configuration of FOLs and FSLs, in turn, is a critical input in sizing the airlift fleet and in setting up its refueling infrastructure, both of which must support all theaters.

Strategic planning must also adapt to changing circumstances. As we noted at the outset, the new security environment includes small,

1The material in this chapter is drawn from a more extensive discussion in MR-1056-AF.
Geographic areas of critical interest will change over time, as will the specific threats within them. An expeditionary ACS/mobility system that is targeted to today’s situation would be oriented toward SWA and Korea, but within a decade those regions could be at peace. In addition to the political changes, support processes and technologies will change, as the Air Force moves to an expeditionary footing and directs its research and reengineering efforts to reducing the support footprint while maintaining effectiveness. For example, replacing older, heavy munitions with the small smart munition would make airlifting munitions more feasible and reduce the need for prepositioning (the greater cost of the small munition would also favor central storage). Over the next ten years, we expect to see many examples of process and technology changes, as well as political shifts,
that will force reevaluations of the ACS/mobility system configuration.

In the end, global and evolving planning requires that operational and logistical leaders make a number of difficult decisions, on a recurring basis, in which cost, political, and effectiveness tradeoffs are made for the system as a whole to ensure that each theater is appropriately protected and supported. This goes against the current practice of each theater commander controlling all theater resources. Peacetime cost considerations alone seem to require that facilities not be duplicated unnecessarily across theaters.

Figure 5.2 illustrates the nature of tradeoff analyses that can be facilitated using the modeling framework described above. In general, there is no “right” answer; rather, decisionmakers must pick from a set of ACS options that meet the employment timelines for various areas and affordability criteria (based on the importance of the area

Figure 5.2—Notional Tradeoff Analysis
and the urgency of the threat). For some critical areas under high threat (e.g., SWA today), the need for fast employment may require forward positioning of support resources and the acceptance of significant investment costs. However, new technologies and process improvements may shift these tradeoff curves to lessen costs, reduce prepositioning, or both.

Changes in the force will also require changes in the support structure. The F-22, for example, is designed to have one-half the support footprint of the F-15. The Joint Strike Fighter (JSF) is also designed to reduce support requirements. Air Force wargames, particularly the Future Capabilities games, have experimented with radically different forces that rely on standoff capabilities or space-based weapons. All of these developments will change support requirements and, therefore, the options that are attractive under peacetime cost constraints.

The advantage of the analytic framework we are developing is that long-term changes can be handled in the same way as shorter-term modifications to policy and technology. New technologies, political developments, and budget changes will require continuous reassessment of the support system’s configuration. New force structures will bring different demands for support resources, and support options must correspondingly shift.

For long-term decisions, the quick-turn, exploratory nature of strategic analysis is even more important. For example, what if the F-22 does not reduce support requirements? New support options can be compared with the current system, and plans can be made for a graceful transition, perhaps conditional on future information or political developments.