LIST OF FIGURES

1.1 Spectrum of Conflict During the Cold War ... 3
1.2 Current Spectrum of Conflict ... 4
1.3 Three Different Methods for Developing a More Effective Rapid-Reaction Capability .. 8
1.4 Current Scope of RAND Modeling Effort ... 12
2.1 SWA Scenario: An Overview ... 17
2.2 Depiction of DRB Hasty Defensive Position in SWA Scenario 18
2.3 East Europe Scenario: An Overview .. 18
2.4 JANUS Depiction of DRB Hasty Defensive Position in East Europe Scenario .. 19
2.5 LANTCOM Scenario: An Overview ... 20
2.6 Depiction of DRB Hasty Defensive Position in LANTCOM Scenario 21
2.7a LERs Over Time for SWA and East Europe Scenarios: Base Case DRB (Fixed-Wing Aircraft Kills and Losses not Included) 28
2.7b LERs Over Time for the LANTCOM Scenario: Base Case DRB (Fixed-Wing Aircraft Kills and Losses not Included) 29
2.8a Simulation Results at the End of the Battle for SWA and East Europe Scenarios: Base Case DRB .. 30
2.8b Simulation Results at the End of the Battle for the LANTCOM Scenario: Base Case DRB .. 31
3.1 The Model-Test-Model Paradigm .. 34
3.2 Depiction of an Early Hunter–Standoff Killer Concept 35
3.3 Depiction of the Hunter–Standoff Killer Concept 37
3.4 Some Light Force RSTA Systems: Tactical UAV, IREM BASS Distributed Sensors, RST-V Platform, and ADAS 39
3.5 Some Direct-Fire Weapons: Javelin, AGS, LOSAT Missile, and Apache (Firing Hellfire) .. 40
3.6 Some Indirect-Fire Launchers and Submunitions: ATACMS and MLRS, BHT Submunition, Towed 155mm Howitzer, HIMARS, and SADARM Submunition .. 41
3.7 Fiber-Optic Guided Missile and Launcher ... 42
3.8 Effect of Upgrades on LERs in SWA and East Europe Scenarios 47
3.9 LERs Over Time for the Three Scenarios: Upgraded DRB 48
3.10a Simulation Results at the End of the Battle for SWA and East Europe Scenarios: Percent of Elements Left 49
3.10b Simulation Results at the End of the Battle for LANTCOM Scenario: Percent of Elements Left ... 50
3.11 Effect of Red Upgrades on LERs in SWA and East Europe Scenarios 52
3.12 Effect of Additional DRB Upgrades on LERs in SWA and East Europe Scenarios .. 53
3.13 Effect of Combined Strategy on LERs in SWA and East Europe Scenarios .. 54
3.14 Effect of Increasing the Number of ADAS Sensors on Completeness 55
3.15 Effect of Increasing the Number of ADAS Sensors on Target Location Errors .. 56
3.16 Effect of Adding in Notional Systems on LERs in East Europe Scenario 56
List of Figures

5.12 Summary of Case 2 Results ... 130
5.13 Depiction of Maneuver Case 3: Standoff Attack and Agile Ground Maneuver to Engage Key Reserve Division ... 130
5.14 Exemplary Future, Lightweight Ground Combat Vehicle Associated with Enhanced Strike Force .. 131
5.15 Summary of Case 3 Results .. 133
5.16 Stages of Maneuver Case 4: Standoff Attack and Agile Ground Maneuver to Engage Soft Targets .. 134
5.17 Summary of Case 4 Results .. 135
5.18 Summary of Four Cases .. 136
6.1 Location of Potential Hot Spots ... 142
6.2 Diagram of Engineer School Layered Defense of Camp Lejeune 144
6.3 Limitations of Air-Based Halt Campaigns 145
6.4 How the Three Components of Option 3 Work in Synergy 147
6.5 Three-Dimensional Rendering of Copehill Down 150
6.6 Photograph of Road at Copehill Down 150
7.1 Notional Deployment of the Three Types of Units for Stopping Enemy Invasion .. 160
B.1 Major Components of RAND's Force-on-Force Modeling Suite 171
B.2 Organization of Models and Their Impact on Different Aspects of Combat Missions .. 174
B.3 Walk-Through of Command and Control Process in Simulation 176
B.4 Command and Control Organization in Simulation 177
B.5 Exemplary Cartographic Information in Simulation 179
B.6 Modeling BAT Submunition Effects with MADAM 181
B.7 Representation of the Acoustic Model in Simulation 182
B.8 Example of RJARS Graphic Output .. 183
B.9 Flight Path Planning in Simulation ... 184
B.10 Representation of RTAM Methodology in Simulation 185
C.1 Example of Seeded Microsensor Concept 189
C.2 Some Tactical Sensor Systems ... 190
C.3 Small (2000-pound) MDARS Robotic Vehicle 191
C.4 Manned and Unmanned High Altitude Sensing Aircraft 192
C.5 Examples of Command, Control, and Communications Systems 193
C.6 Direct-Fire Munitions Come in Many Forms 195
C.7 Some Exemplary Indirect-Fire Systems 197
C.8 Enhanced Fiber-Optic Guided Missile and LOCAAS Loitering Weapon Systems .. 198
D.1 HMMWV-Based UGV Used in DARPA Demo II Program 202
D.2 Recon/Counter-Recon Scenario Emphasized UGV Maneuver 203
D.3 MOUT Scenario Highlighted High-Risk "Pointman" Function 204
D.4 UGVs Were Found to Greatly Increase Situation Awareness in Deep Attack Scenario .. 205
D.5 Quality of Sensor Had Major Impact on Outcome of Deep Fires Scenario 206
D.6 UGV Speed and Size Also Impacted UGV Survivability in Deep Fires Scenario .. 207
D.7 In Recon/Counter-Recon Scenario, UGV Speed and Weapon Both Impact Outcomes .. 208
D.8 MOUT Scenario Shows That Ambush Is More Survivable When UGVs Are Equipped with Weapons .. 209