The research described in this report was conducted by RAND's Science and Technology Policy Institute, under Contract ENG-9812731.
The National Institute for Occupational Safety and Health (NIOSH) is very pleased to have made possible this report conveying community views of health and safety risks and the personal protective needs for emergency responders. These views of occupational hazards and personal protective needs, gathered from emergency responders, will play a central role in NIOSH’s continuing efforts to better protect our nation’s emergency responders though improved technology, education, and training.

NIOSH is the federal agency responsible for conducting research and making recommendations for the prevention of work-related disease and injury. Created by Congress in 1970 with the passage of the Occupational Safety and Health Act, the Institute is part of the Centers for Disease Control and Prevention within the Department of Health and Human Services. Its mission is to provide national and world leadership in preventing work-related illness, injury, and death by pursuing the strategic goals of surveillance, research, occupational disease and injury prevention, and information and training.

In fiscal year 2001, Congress allocated funds for NIOSH to establish a new program for personal protective technology research to protect the nation’s miners, firefighters and other emergency responders, and health care, agricultural, and industrial workers. To carry out this research, NIOSH formed the National Personal Protective Technology Laboratory (NPPTL). The Laboratory’s mission, like the mission of its parent organization, is to provide world, national, and Institute leadership for prevention and reduction of occupational disease, injury, and death but with special emphasis on those workers who rely on personal protective technologies.

The NPPTL is engaged in an active program of research, standards development, and information dissemination. Recently, the Laboratory developed test methods and standards for self-contained breathing apparatus and gas masks that could be used in the event of a chemical, biological, radiological, or nuclear terrorist attack. The tragic events of September 11, 2001, underscore the signifi-
cance of the mission of the NPPTL. The lessons learned from those events identify several important areas that warrant attention and are providing critical guidance for our research.

Richard Metzler
Director, National Personal Protective Technology Laboratory
National Institute for Occupational Safety and Health
Firefighters, law enforcement officers, and emergency medical personnel play a critical role in protecting people and property in the event of fires, natural disasters, medical emergencies, and actions by terrorists and other criminals. This report presents an overview of occupational hazards and personal protection needs as viewed by emergency responders in the United States.

The primary goal of this report is to help define technology needs and research priorities for personal protection for emergency responders. Feedback from expert stakeholders is essential to this process. The findings reported here were derived from discussions with 190 representatives from 83 organizations in the emergency response community nationwide. These findings are intended for use in conjunction with emergency responder injury and fatality data, evaluations of current personal protection research, and assessments of existing personal protective technologies to help federal managers and decisionmakers to

- understand the evolving work and safety environment surrounding emergency situations
- develop a comprehensive personal protective technology research agenda
- improve federal education, training, and other programs directed at the health and safety of emergency responders.

This report was requested by the National Personal Protective Technology Laboratory of the National Institute for Occupational Safety and Health. The Laboratory was created in 2001 to ensure that the development of personal protective equipment keeps pace with employer and worker needs as work settings and worker populations change and new technologies emerge. The Laboratory’s initial area of emphasis is to respond to the critical need for effective personal protective technologies for the nation’s emergency responders.

This report should be of interest to agencies involved in research, implementation, and guidance associated with protecting emergency responders. This re-
Protecting Emergency Responders

This report should also help state and municipal officials, trade union leaders, industry executives, and researchers to gain a better understanding of the various equipment and training needs for protecting emergency workers.

This report is the second in a series of RAND publications on Protecting Emergency Responders. The first in the series is


The study approach and findings in this report also build on the following earlier RAND studies on related areas of research:


THE SCIENCE AND TECHNOLOGY POLICY INSTITUTE

Originally created by Congress in 1991 as the Critical Technologies Institute and renamed in 1998, the Science and Technology Policy Institute is a federally funded research and development center sponsored by the National Science Foundation and managed by RAND. The Institute’s mission is to help improve public policy by conducting objective, independent research and analysis on policy issues that involve science and technology. To this end, the Institute

- supports the Office of Science and Technology Policy and other Executive Branch agencies, offices, and councils
- helps science and technology decisionmakers understand the likely consequences of their decisions and choose among alternative policies
- helps improve understanding in both the public and private sectors of the ways in which science and technology can better serve national objectives.

Science and Technology Policy Institute research focuses on problems of science and technology policy that involve multiple agencies. In carrying out its mission, the Institute consults broadly with representatives from private industry, institutions of higher education, and other nonprofit institutions.
Inquiries regarding the Science and Technology Policy Institute may be directed to:

Helga Rippen  
Director, RAND Science and Technology Policy Institute  
1200 South Hayes Street  
Arlington, VA 22202-5050  
Phone: (703) 413-1100 x5574  
Web: http://www.rand.org/scitech/stpi/  
Email: stpi@rand.org
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword ................................................</td>
</tr>
<tr>
<td>Preface ..................................................</td>
</tr>
<tr>
<td>Figures ..................................................</td>
</tr>
<tr>
<td>Tables ...................................................</td>
</tr>
<tr>
<td>Summary ..................................................</td>
</tr>
<tr>
<td>Acknowledgments ........................................</td>
</tr>
<tr>
<td>Acronyms ................................................</td>
</tr>
</tbody>
</table>

Chapter One
INTRODUCTION ........................................... 1
Study Task and Purpose .................................. 1
How the Study Was Conducted .............................. 2
Limitations of the Study Approach ........................ 5
Definitions ................................................. 6
Scope of Study ............................................. 7
About This Report ....................................... 8

Chapter Two
OVERVIEW OF THE EMERGENCY RESPONDER COMMUNITY ........................................ 11
Services in the Emergency Responder Community ............ 11
The Fire Service .......................................... 12
The Emergency Medical Service ............................ 13
Law Enforcement ......................................... 14
Summary .................................................. 16
Emergency Response Activities ............................ 16
Fire and Emergency Medical Service ....................... 16
Law Enforcement ......................................... 17
Emergency Responder Injuries and Fatalities ............... 18
Chapter Three
PROTECTING FIREFIGHTERS ........................................... 25
Improving Structural Firefighting Ensembles .................... 26
Ensuring Component Integration and Compatibility ............ 26
Improving Gloves and Footwear .................................. 30
Improving Gear Integrity and Maintainability .................. 31
Reducing Physical Stress .......................................... 32
Improving Turnout Gear Heat and Moisture Dissipation ...... 33
Reducing PPT Weight ............................................. 34
Does Encapsulation Increase the Risk of Injury? ............... 35
Improving Respiratory Protection ................................. 36
Improving SCBA Air Supply and Monitoring .................... 37
Expanding Options for Respiratory Protection ................ 37
Improving Communications Capabilities ....................... 38
Improving Personnel Accountability ........................... 40

Chapter Four
PROTECTING EMERGENCY MEDICAL SERVICE RESPONDERS ........................................... 43
Lack of Specialized Personal Protection Technology for Emergency Medical Service Responders ............ 44
Protecting Against Pathogens .................................... 46
Addressing Increasing Concerns About Assaults ............... 47
Seeking Greater Protection from Weapons of Mass Destruction and Chemical Threats ................... 48

Chapter Five
PROTECTING LAW ENFORCEMENT RESPONDERS ............ 51
Challenges of Protecting Law Enforcement Responders in the Line of Duty ........................................... 51
Hazards and Technology Priorities for Law Enforcement Responders ............................................. 54
Protecting Against Assault ........................................ 54
Preventing Automobile Injuries .................................... 56
Protecting Against Pathogens ..................................... 57
Chapter Six  
PROTECTING HAZMAT AND ANTI-TERRORISM  
RESPONDERS .......................................................... 59  
Conventional Hazardous Materials Response Protection .... 60  
Terrorism Protection ..................................................... 62  
Shortcomings with Conventional PPT ......................... 62  
Chemical Protection Needs of Front-Line Responders ...... 63  
Uncertainties Surrounding Chemical Protection .......... 64  
Chemical Protection Challenges and Alternatives ......... 68  

Chapter Seven  
SYSTEMS-LEVEL PROTECTION ISSUES ....................... 69  
Communications ......................................................... 69  
Tactical Communications ............................................. 69  
Strategic Communications ........................................... 70  
Hazard Assessment ....................................................... 73  
Hazard Information ....................................................... 74  
Environmental Monitoring Equipment ....................... 75  
Location Tracking ......................................................... 79  
Human Factors ............................................................. 80  
Knowledge Management ............................................. 80  
Safety Practices and Enforcement ............................... 82  
Responder Fitness and Wellness ................................... 84  
Tradition and Organizational Culture ........................... 86  

Chapter Eight  
PROCUREMENT AND LOGISTICS ............................... 89  
The Acquisitions Process ............................................. 89  
Risk Assessment .......................................................... 89  
PPT Identification and Evaluation .................................. 90  
Standards and Certification ......................................... 92  
Logistics ................................................................. 94  
Storage, Transportation, and Outfitting ....................... 94  
Maintenance and Reliability ....................................... 95  
Risk-Specific Versus Universal Equipment .................... 98  
Mutual Aid and Interoperability ................................... 100  

Chapter Nine  
PUTTING COMMUNITY VIEWS TO WORK ..................... 103  
Community Priorities ................................................... 103  
Reducing Physical Stress and Improve Comfort ............ 103  
Improving Communications ....................................... 106  
Upgrading Communicable Disease Protection ................ 107
Developing Practical Respiratory and Chemical Protection
   Equipment and Equipment Guidelines for First Responders . . . 107
Improving Personal Protective Technology Standby Performance . 109
Expanding Training and Education ................................. 110
Benchmarking Best Safety Practices .............................. 112
Policy Issues for the Future ........................................ 113
Personal Protective Technology Research and Development ...... 114
Discretion in Personal Protection Decisionmaking ................. 117
Personal Protective Technology Standards for Emergency Medical
   and Law Enforcement Services ................................ 118
Personal Protective Technology Performance Assessment .... 120
Personal Protective Technology Standardization and
   Interoperability ..................................................... 120
The Role Risk Plays in Emergency Response ....................... 122

Appendix
A. DISCUSSION PARTICIPANTS ........................................ 125
B. DISCUSSION PROTOCOL ........................................... 137
References ................................................................. 139
1.1. Location and Type of Participating Organizations ........................................ 4
2.1. Number and Average Size of Fire Departments and Number of Firefighters in 2000 ................................................................. 13
2.2. Number and Average Size of Local Police Departments and Number of Officers in 2000 ................................................................. 15
2.3. Number of Fire Department Responses in 2000 and Percent Increase in Responses from 1986 to 2000 .............................................. 17
2.4. Causes of Firefighter Injuries and Fatalities ............................................. 20
2.5. Causes of Police Injuries and Fatalities ................................................... 22
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.1</td>
<td>Personal Protection Priorities and Recommendations Raised by the Emergency</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Responder Community</td>
<td></td>
</tr>
<tr>
<td>S.2</td>
<td>Key Policy Areas and Issues Raised by the Emergency Responder Community</td>
<td>114</td>
</tr>
<tr>
<td>2.1</td>
<td>Law Enforcement Agencies and Officers in the United States, 2000</td>
<td>14</td>
</tr>
<tr>
<td>9.1</td>
<td>Personal Protection Priorities and Recommendations Raised by the Emergency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Responder Community</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Key Policy Areas and Issues Raised by the Emergency Responder Community</td>
<td></td>
</tr>
</tbody>
</table>
Emergency response is an inherently dangerous occupation. Emergency responders face a wide range of serious hazards in their jobs, which places them at high risk for occupational injury or death. This risk is mitigated by their using various forms of personal protective technologies (PPTs), such as protective garments, respiratory protection, environmental monitoring and communications equipment, and practices and protocols that focus on safety.

This report addresses the safety of emergency responders by examining the hazards and personal protection needs that members of the emergency responder community regard as being the most important. The findings reported here are based on in-depth discussions with 190 members of the emergency response community nationwide, including structural firefighters, emergency medical service (EMS) responders, police officers, emergency management officials, technology and services suppliers, researchers, and program managers from 83 organizations around the country.

The principal topics addressed in this report include:

- The primary tasks that emergency responders undertake
- Situations in which the risk of injury is the greatest and that have the highest priority for improving personal protection
- Current and emerging technologies that are critical to protecting the health and safety of emergency responders
- Drivers of, impediments to, and gaps in technology development.
PROTECTING FIREFIGHTERS

Firefighters who participated in this study consistently noted that their protective clothing (turnouts or bunker gear) provides excellent flame retardance and thermal protection. However, despite the high protective capability of current firefighter clothing materials and components, several protection challenges remain.

A firefighting ensemble composed of highly effective components can nevertheless leave firefighters vulnerable to injury due to component incompatibility or bodily exposure at component interfaces, with mismatched gloves and coat cuffs often cited as examples. To address such problems, study participants recommended increased “configuration control”—the standardized specification of component dimensions and interfaces.

Reducing thermal and physical stress is a top priority among the firefighters with whom we met. The thermal protective ensemble, including turnouts, boots, gloves, and hoods, almost completely encapsulates a firefighter, which creates difficulties in dissipating body heat. The weight of the protective garments, self-contained breathing apparatus (SCBA), and firefighting equipment puts firefighters at high risk of injury from physical stress and overexertion. Study participants pointed to several approaches to addressing this problem, including increasing the vapor transmission of turnout textiles and improving the fit of turnout gear to increase its flexibility and comfort. Another suggested approach is the implementation of physiological monitoring and communications systems to provide advance warning before firefighters suffer heat stress or exhaustion.

Firefighters noted that they are generally very satisfied with the respiratory protection afforded by modern SCBA. However, study participants also observed that there are situations in which alternative forms of respiratory protection may be appropriate, such as during fire overhauls or during search-and-rescue operations after a structural collapse. Some participants cautioned, however, that any such alternatives would provide less respiratory protection, a consideration that must be weighed carefully in any decision. Discussion participants also called for ways to improve SCBAs, citing the desire for lighter and higher-capacity air bottles and improved air supply monitoring and warning capabilities.

1Firefighter protective clothing, commonly referred to as turnouts or bunker gear, consists of flame- and water-retardant pants and overcoat.

2Fire overhaul begins when the main fire has been suppressed. It entails activities such as searching for hidden hot spots, salvaging property, and cleaning up debris and equipment.
Improving communications for individual firefighters is another high-priority area mentioned by study participants. They repeatedly pointed out that firefighters have great difficulty communicating person-to-person and over a radio while wearing an SCBA face mask. Some participants further observed that their radios are not designed specifically for the needs of a firefighter, which is a result of the relatively small market share that emergency responders represent.

Improving fireground accountability, the ability to account for the whereabouts of firefighters at an incident scene, was also viewed by larger fire departments as a high priority. Many firefighters are injured or do not receive prompt treatment for injuries, participants claimed, because of confusion over the location and activities of individuals during an incident. Existing accountability systems that rely on manually transferring personal identification tags to status boards were viewed as being outdated. Innovations utilizing magnetic card readers, which were discussed by several participants, may provide improved accounting system flexibility and reliability.

PROTECTING EMERGENCY MEDICAL SERVICE RESPONDERS

Discussion participants representing the emergency medical services commonly claimed that little protective equipment designed specifically for their work environment is available. And what does exist is often low quality, uncertified, or impractical. To remedy this problem, some organizations were adopting PPT, such as SCBAs, bunker gear, and armored vests, from the fire and law enforcement services. One reason cited for the shortfalls in EMS protection is that no federal agency is dedicated to addressing personal protection issues, such as equipment, standards development, certification, and PPT usage enforcement for the emergency medical responder community, and little funding is dedicated to address these issues. Addressing protection needs is further complicated by the wide range of tasks that EMS responders undertake and the multiple types of agencies that provide emergency medical response service.

Emergency medical service responders expressed a strong concern about exposure to infectious diseases such as AIDS, hepatitis C, and tuberculosis. Although exposure to infectious diseases accounts for very few actual responder injuries or illnesses, pathogens were seen as a growing hazard and one of the most difficult hazards to protect against. Emergency medical responders typically have access to protective gloves, masks, goggles, and splash gowns. However, this gear is often designed for hospital use and is sometimes difficult to use in the field. Study participants in several EMS departments noted that usage of this gear has increased considerably through the issuance of fanny packs containing an ensemble of protective gear, which make the gear more easily accessible.
Another hazard of increasing concern to EMS personnel is physical assault. Unpredictable circumstances leave EMS responders particularly vulnerable to surprise attacks and other violent acts. In response, many EMS personnel are now being trained in situation management and self-defense. EMS responders in many larger departments are also being issued body armor. However, the use of body armor is left to the discretion of individuals, and its use is estimated to be rare.

Like emergency responders in all services, EMS responders are concerned about hazards associated with terrorism. The top concern in this area is exposure to biological and chemical warfare agents, either direct exposure or exposure while treating victims. EMS participants expressed a desire for improved hazard assessment training, as well as better respiratory protection and protective clothing options, to deal with these hazards.

**PROTECTING LAW ENFORCEMENT OFFICERS**

A conclusion that emerged from our discussions with law enforcement representatives is that protecting law enforcement personnel may be the most challenging personal protection task within the emergency response community. This finding stems from several factors: Law enforcement responders are typically the first responders on the scene of an incident and hence have the least advance information about potential hazards; their mobility and patrol requirements limit the amount of gear they can wear or carry with them; their appearance requirements, particularly for covert operations, limit their protection options; their being on patrol rather than returning to a station between calls limits training opportunities; and most personal protective technologies are not developed with the law enforcement mission and operating environment in mind. In addition, law enforcement lacks a centralized professional organization dedicated to health, safety, and protection. As with EMS, law enforcement often turns to fire service resources for guidance.

The ballistic vest is the most widely used personal protection technology in law enforcement. Despite their proven effectiveness, police often do not wear vests because they can be hot and uncomfortable, particularly while riding in a car. Vest designs have improved over the years to address these concerns, but the design improvements have been achieved, in part, by reducing the size of vests, and some participants expressed concern that body coverage was too small. Alternatives such as “throw-on” armored jackets were mentioned as an option, though participants noted that those jackets might not be readily available when needed.

Automobile injuries are another area of concern. Representatives from a number of departments noted three main problems contributing to automobile
driving hazards: (1) The side placement of computers and radios can cause officers to become distracted while driving and can present impact hazards in accidents. Study participants called for in-dash systems and overhead displays to improve safety. (2) High-speed, rear-end collisions are also a serious problem, and participants suggested strengthening automobile frames, adding rear-impact safety devices, and improving vehicle warning lights. (3) Finally, unsafe driving behavior, particularly in younger officers, is a major contributor to accidents and could be mitigated by stricter driving policies or by speed monitoring or governing systems.

Pathogen protection is another concern among law enforcement responders, particularly protection from pathogens transmitted during physical assaults such as biting or spitting. While many patrol cars are stocked with disposable gloves and sometimes also masks, these items are difficult to access quickly and are rarely used.

PROTECTING RESPONDERS FROM TERRORISM

A concern expressed by the entire emergency responder community is adequate protection against terrorist attacks and the vulnerability of nonspecialist first responders in particular. Accordingly, several emergency responder departments have begun equipping their vehicles with chemical protective gloves, suits, escape hoods, and respirators.

RAND’s discussions with participants revealed that the issue of providing protection for chemical, biological, or radiological (CBR) terrorism is complicated by several uncertainties:

- Many police and fire department representatives felt that they did not know what they need to be protected against, what form of protection is appropriate, or where to look for such protection. Such uncertainty frustrates efforts to design a protection program and acquire the necessary technology.
- Participants were unsure how well the available protective technologies will work for anticipated situations. While hazardous materials (hazmat) protection is subject to rigorous standards and certification procedures, hazmat equipment and usage protocols are designed primarily around the conventional model of hazmat response to industrial accidents. Much of the available hazmat protection is neither designed nor certified for this new role of terrorism response.

---

3 An emergency escape hood is a soft-sided pullover hood with an elastic neck seal. These hoods provide particulate and chemical respiratory protection to enable wearers to exit hazardous environments.
Participants were unclear how personal protective technology is expected to be used in terrorist events. Because of the uncertainty surrounding the roles of responders in such situations, major questions remain as to exactly where such equipment should be stored, when it should be donned, what tasks should be performed while it is used, and who should make these decisions.

BEYOND THE INDIVIDUAL: SYSTEMS-LEVEL PROTECTION

In addition to protective clothing and other personal gear that supports a single individual, several other forms of emergency responder protection operate at the command or unit level. Such “systems-level” protection mentioned by participants includes communications, location monitoring, hazard monitoring, and various human factors.

Communications

Beyond the tactical communications issues that firefighters face (discussed above), a number of police, EMS, and fire departments emphasized strongly that there are fundamental problems with the radio communication systems currently used by emergency responders. Departments often use incompatible radio systems and cannot communicate easily with each other at the scene of major incidents. This problem affects communications among local departments as well as communications between municipal departments and state or federal agencies. Such communications breakdowns can have severe consequences. For example, incident commanders may have difficulty in maintaining scene control, utilizing forces most effectively, or sharing critical safety information.

This problem is being addressed by a push toward implementing a uniform, interoperable radio system for emergency responders. While this radio system—a digital, 800-megahertz backbone system—has many advantages over analog radio-to-radio technologies, many departments that had acquired these systems were not fully satisfied with their performance. Their concerns include the inability to talk over other users, unreliable signal transmission in areas with tall buildings or hills, and the high investment costs. As a result, departments often resort to maintaining multiple systems to handle all of their communications needs.
Hazard Assessment

An important part of protecting emergency responders is understanding the hazards that they face. While generalized models based on empirical evidence provide much of the basic input on protection choices, incident-specific information can further characterize those hazards and inform protection and procedural decisions. Several hazard-assessment tools were mentioned in the discussions, including:

- On-site information, such as hazmat placards
- Facility “pre-plans”\(^4\)
- Information supplied by dispatchers
- Environmental monitoring equipment.

Participants noted that all of these methods can provide useful information, but that they suffer from various shortcomings that limit their applicability. Interestingly, most participants stated that hazard information is often used to guide operational decisions but rarely influences personal protection selection because protection options are very limited to begin with.

Personnel Location Monitoring

A longer-term but potentially very valuable technology for larger services is personnel location monitoring. Participants from both fire and police departments made mention of this technology and noted that the primary benefit would be the ability to quickly locate a trapped or injured responder. The technology could also assist in managing operations, guiding personnel through buildings, improving dispatching efficiency, and managing driving behaviors. Several participants have begun investigating emerging technologies based on the Global Positioning System (GPS). Such systems, however, are expensive and, more fundamentally, suffer from poor vertical resolution and signal penetration problems. Other location technologies under discussion and in development utilize radio triangulation (exploiting differences in travel times of radio signals between a source and multiple receivers), radar (exploiting the travel time of reflected radio signals), inertial tracking (using accelerometers to compute cumulative movement; also known as “dead-reckoning” systems), and hybrid systems.

\(^4\)Pre-plans comprise site-specific information compiled beforehand, such as information on hydrant and standpipe locations, utilities, building design and layout, hazardous material inventories, and service histories from previous calls.
Human Factors

Human factors play an important role in emergency responder safety and health. As data collection and manipulation capabilities increase, limitations in knowledge management, or the ability of people to effectively utilize available information, can impact responder safety in some cases. Commonly cited examples include underutilization of mobile data terminals and the inability to use or correctly interpret readings from environmental hazard monitors.

Another critical human factor is adoption of safety practices to mitigate day-to-day injuries, such as a sprain from a fall. Several agencies are addressing these hazards with standard approaches such as offering physical fitness classes, maintaining a safe environment in fire stations, and issuing properly fitting clothing and supportive footwear.

Tradition and culture also affect emergency responder safety. A common example is a preference for a certain style of fire helmet: Despite their substantial weight and higher cost, many firefighters prefer the appearance of traditional-style helmets with large brims. Another cultural aspect that may impact safety is the fraternal and often voluntary nature of the profession, which can temper enforcement of safety practices. In this regard, many participants pointed to the more stringent standards used by specialized units such as hazmat or urban search-and-rescue teams. Finally, tradition may hinder the adoption of safety and health innovations. Decisions on whether to accept new technologies or even simply to change brands or suppliers are deeply rooted in tradition.

PROCUREMENT AND LOGISTICS OF PROTECTIVE TECHNOLOGIES

Decisions on how PPTs are identified, acquired, and used in the field vary significantly, as was noted by many participants. Many issues and concerns were raised on the procurement and logistics of protective technologies that have implications for PPT research and development needs.

Personal Protective Technology Standards and Performance Evaluation

A critical concern for most departments was their getting adequate information to guide technology acquisitions. Participants indicated that few emergency response agencies have the resources or capabilities to conduct formal risk assessments to guide these acquisitions. As such, many departments choose protective technology based on supplier relationships. While design and performance standards assure a basic level of functionality and protection, distin-
guishing among the large variety of certified gear within each equipment class is not a straightforward process.

Consequently, most responder organizations must resort to informal, ad hoc PPT evaluation and information gathering and analysis because they lack access to reliable public sources on PPT performance that would inform their procurement decisions. In response to these problems, many participants strongly advocated implementing objective, third-party assessments to help guide them in their PPT evaluations and decisionmaking.

**Storage and Maintenance**

As emergency responders have acquired greater amounts of protective equipment, storerooms, vehicles, and people have become increasingly crowded and burdened. An individual can carry only so much gear. Squad car trunks are getting full. EMS vehicles have limited storage space. Many communities have purchased dedicated disaster response vehicles or trailers, and many have created supplemental equipment caches, but these measures raise questions about how rapidly such equipment will be fielded and who will have access to it.

As emergency response organizations acquire greater amounts of gear, their equipment maintenance and reliability needs are also increasing. Many emergency responders mentioned the strain that meeting these needs places on a department. Firefighters expressed concern over their departments’ ability to ensure the integrity of turnouts (moisture barriers in particular) and other gear after extensive use. Several fire and police departments as well as PPT manufacturers felt that passive integrity monitors, such as indicators that change color as material properties change, would be a valuable addition to protective equipment. Along with the availability of sophisticated environmental monitoring and other electronic equipment comes the need for technical expertise and resources to maintain that equipment.

**Universal Versus Tailored Personal Protective Technology**

The role of emergency responders continues to expand as does the ability of emergency responders to evaluate site-specific hazards. Thus, several participants claimed, opportunities exist to improve safety by selecting protection options that are based on the specific situation. However, such options are currently quite limited.

The standard in the fire service is universal protection—a single ensemble designed to protect against all anticipated hazards. Such an ensemble is opti-
mized for structural fires and may not provide the best protection for the range of other situations firefighters encounter, such as vehicle accidents or medical calls.

Arguments against tailored protection include the simplicity that a single ensemble affords, uncertainties about the actual hazards, and the time, cost, and energy involved in supporting several types of protective clothing. Risk-specific protection is beginning to emerge: Protective clothing standards for urban search-and-rescue and emergency medical response ensembles recently have been introduced.

**Interoperability**

A final logistics issue concerns mutual aid agreements between jurisdictions and the interoperability of protective equipment. Interoperability of protective equipment may be critical at large incidents, as was the case with respirators at the World Trade Center in September 2001. Mutual aid agreements between jurisdictions typically address incident management, training, and technical capabilities, but protection is rarely included in this list. Major barriers to PPT coordination in the emergency responder community include incompatibilities in funding cycles, equipment replacement cycles, and purchasing power; tradition and well-established vendor relationships that hinder change; and the absence of procedures for accomplishing PPT coordination easily.

**PUTTING COMMUNITY VIEWS TO WORK**

A number of issues emerged from RAND’s discussions with participants that have important implications for improving the protection of emergency responders. These issues generally can be divided between two areas: (1) priority areas for improving equipment and practices and (2) broader policy issues that warrant further research, analysis, and discussion. The priority areas are relatively straightforward and are, for the most part, consensus concerns within the responder community that were raised directly by the discussion participants. Many of the policy issues, on the other hand, are complex and pose challenging questions. These issues emerged indirectly from the community discussions, and most are marked by fundamental differences of opinion within the community. These issues are summarized in Tables S.1 and S.2. In several cases, these concerns are actively being addressed by government agencies and other organizations concerned with emergency responder safety.

---

5A *mutual aid response* is one in which more than one department participates.
## Table S.1
Personal Protection Priorities and Recommendations Raised by the Emergency Responder Community

<table>
<thead>
<tr>
<th>Personal Protection Priorities</th>
<th>Specific Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce physical stress and improve comfort</td>
<td>• Improve garment breathability</td>
</tr>
<tr>
<td></td>
<td>• Reduce equipment weight</td>
</tr>
<tr>
<td></td>
<td>• Ensure consistent and appropriate sizing of components</td>
</tr>
<tr>
<td></td>
<td>• Enhance ergonomic characteristics</td>
</tr>
<tr>
<td>Improve communications</td>
<td>• Make radio systems interoperable</td>
</tr>
<tr>
<td></td>
<td>• Improve communications capabilities with SCBA</td>
</tr>
<tr>
<td></td>
<td>• Improve radio design to allow hands-free use and use with gloves</td>
</tr>
<tr>
<td>Upgrade communicable disease protection</td>
<td>• Increase protective equipment options for EMS personnel and police</td>
</tr>
<tr>
<td>Develop practical respiratory and chemical protection equipment</td>
<td>• Improve the chemical and biological protection of garments and respirators</td>
</tr>
<tr>
<td>and guidelines for first responders</td>
<td>• Design protective equipment such that it minimizes interference with responder activities</td>
</tr>
<tr>
<td></td>
<td>• Require more chemical/biological hazard training</td>
</tr>
<tr>
<td>Improve PPT standby performance</td>
<td>• Develop integrity monitoring and service-life monitoring technologies</td>
</tr>
<tr>
<td></td>
<td>• Enhance compactness and portability of protective equipment</td>
</tr>
<tr>
<td></td>
<td>• Address logistical complications</td>
</tr>
<tr>
<td></td>
<td>• Reduce protective equipment maintenance complexity and cost</td>
</tr>
<tr>
<td>Expand training and education</td>
<td>• Require more training on sophisticated protective equipment</td>
</tr>
<tr>
<td></td>
<td>• Reduce complexity of new equipment</td>
</tr>
<tr>
<td>Benchmark best safety practices</td>
<td>• Study and benchmark safety practices, particularly for EMS and police</td>
</tr>
<tr>
<td></td>
<td>• Study and benchmark PPT enforcement practices</td>
</tr>
</tbody>
</table>
### Table S.2

**Key Policy Areas and Issues Raised by the Emergency Responder Community**

<table>
<thead>
<tr>
<th>Policy Areas</th>
<th>Specific Issues</th>
</tr>
</thead>
</table>
| PPT research and development                   | • Research should be more strategic and multidimensional, including more fundamental, long-term research  
• Greater emphasis on ensembles is needed   
• R&D should address response activity rather than services  
• Decentralized market limiting innovation and purchasing power should be addressed |
| Discretion in personal protection decisionmaking | • Expanding role of emergency responders and improved hazard assessment warrant increased attention to activity-specific tailoring of protection |
| PPT standards for emergency medical services and law enforcement | • EMS and police communities need dedicated personal protection, safety, and standardization efforts |
| PPT performance assessment                      | • Reliable and objective equipment performance assessments need to be developed                                                                 |
| PPT standardization and interoperability         | • Mutual-aid agreements and extended operations should be facilitated by enhanced standardization and interoperability                                |
| The role of risk in emergency response          | • Examine emergency responders’ perceptions of and their responses to risks inherent in emergency response  
• Promote efforts to decrease risk through improved information management, clarified protocols, and improved equipment |
We gratefully acknowledge the many members of the emergency responder community throughout the country who participated in the discussions and thank them for their time, thoughtfulness, and candor. A list of participants can be found in Appendix A.

We thank Richard Metzler, Louis Smith, and Jonathan Szalajda at the National Personal Protective Technology Laboratory for their guidance throughout the study. We also thank the following people for their assistance in identifying departments and other organizations to include in the study: William Haskell of the U.S. Army Soldier and Biological Chemical Command’s Soldier Systems Center and the InterAgency Board for Equipment Standardization and InterOperability; Don Rosenblatt, executive director of the International Association of Chiefs of Police; Assistant Chief James Hone of the Santa Monica Fire Department; Kathleen Higgins of the National Institute of Standards and Technology Office of Law Enforcement Standards; Jim Gass of the Oklahoma City Memorial Institute for the Prevention of Terrorism; and Andy Levinson of the International Association of Firefighters. At RAND, we thank Jerry Sollinger for his help in preparing this report.

Finally, three peer reviewers provided important analytical insights and background information that strengthened this report: K. Jack Riley, director of RAND Public Safety and Justice; Robert C. Dubé, captain, Fairfax County Fire and Rescue; and Paul M. Maniscalco, executive council member of the National Association of Emergency Medical Technicians.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR</td>
<td>Air-purifying respirator</td>
</tr>
<tr>
<td>BDU</td>
<td>Battle dress uniform</td>
</tr>
<tr>
<td>CBR</td>
<td>Chemical, biological, radiological</td>
</tr>
<tr>
<td>EMS</td>
<td>Emergency medical service</td>
</tr>
<tr>
<td>EMT</td>
<td>Emergency medical technician</td>
</tr>
<tr>
<td>FBI</td>
<td>Federal Bureau of Investigation</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>Hazmat</td>
<td>Hazardous material</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>ICS</td>
<td>Incident Command System</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>NATO</td>
<td>North Atlantic Treaty Organization</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>NIJ</td>
<td>National Institute of Justice</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>NPPTL</td>
<td>National Personal Protective Technology Laboratory</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal protective equipment</td>
</tr>
</tbody>
</table>
PPT  Personal protective technology
R&D  Research and development
SCBA  Self-contained breathing apparatus
SWAT  Special weapons and tactics
USAR  Urban search and rescue
WMD  Weapons of mass destruction