S.1. Current and Future Carrier Force Structures xvi
S.2. Build Intervals for Sustaining a 12-Ship Fleet xviii
S.3. End-of-Fuel Dates for Current Carriers in Relation to Nominal Ship-Construction Schedule xix
S.4. Effect of CVN 77 Start Date and Build Period on Total Shipyard Costs .. xx
S.5. The CVN 77 Labor Demand and the Total Shipyard Workforce Profile. xxi
S.6. Labor-Demand Requirements for Construction of CVN 77 for Different Start Dates and Build Periods, in Relation to Other Work at NNS xxi
S.7. Annual Costs for Scheduled Availabilities and Ship’s Enlisted Company, Nimitz Class xxv
S.8. Initiatives to Reduce Maintenance and Crew Costs xxv
2.2. Current and Future Carrier Force Structures 16
2.3. Carrier Response in Relation to Number of Carriers in Fleet 18
2.4. Breakdown of a Nimitz-Class Carrier’s Life Cycle 18
2.5. Carriers Completed Each Year, by Shipyard 21
3.1. Relationship Among Fleet Size, Ship Retirement Age, and Build Rate ... 24
3.2. Service Lives of Carriers Commissioned Since 1955 26
3.3. Build Intervals for Sustaining a 12-Ship Fleet 28
3.4. End-of-Fuel Dates for Current Carriers in Relation to Nominal Ship-Construction Schedules ... 29
3.5. Time Required to Increase Fleet Size .. 32
4.1. CVN 77 Labor-Demand Profile .. 39
4.2. Total NNS Labor Demand, by Skill Group, Assuming CVN 77 Starts in 2002 ... 39
4.3. Total NNS Labor Demand, by Project, Assuming CVN 77 Starts in 2002 ... 40
4.4. Total Demand for Welders at NNS, Assuming CVN 77 Starts in 2002 ... 41
4.5. Need for Excess Supply of Welders, Assuming CVN 77 Starts in 2002 ... 43
4.6. Total NNS Employment Profile, Assuming CVN 77 Starts in 2002 ... 43
4.7. Effect of CVN 77 Start Date on Construction Costs 45
4.8. Anticipated Labor Level at Newport News over the Period of Concern ... 45
4.9. Labor Demand of Commercial Projects in Relation to That Required to Build CVN 77 ... 47
4.10. Build Periods and Construction Costs .. 47
4.11. Build Periods for Recent Carriers .. 48
4.12. Labor-Demand Requirements for Construction of CVN 77 for Different Start Dates and Build Periods, in Relation to Other Work at NNS ... 50
4.13. Effect of CVN 77 Start Date and Build Period on Construction Costs, Assuming CVX Starts in 2006 51
4.14. Effect of CVX on Extra Cost or Savings Associated with Varying CVN 77 Start Date and Build Period 52
4.15. Response of Figure 4.7 Results to Changes in the Schedule of Another Project (CVN 70 RCOH) ... 54
5.1. Shrinkage of Workforce to Match Volume Reduction, BWX Technology, Nuclear Equipment Division ... 60
5.2. Age of Hourly Workforce, BWX Technology, Nuclear Equipment Division, as of November 14, 1996 ... 61
5.3. Seniority of Hourly Workforce, BWX Technology, Nuclear Equipment Division, as of November 14, 1996 62
5.4. Schedule for CVX (Nuclear) Heavy-Equipment Components (FY06 CVX 78 Shipyard Start) 64
5.5. BWX Technology’s Recommended Schedule for Heavy-Equipment Components and Current Schedule (FY06 CVX 78 Shipyard Start) 64
5.6. Shipyard Need Dates and Manufacturing Spans for Heavy-Equipment Components, Based on CVN 76 and Nimitz-Class Experience .. 65
6.1. Total Dollar Value of Contractor-Furnished Equipment in Relation to Number of Suppliers 68
6.2. Recent Ship-Construction Times (Award to Delivery) 70
6.3. Recent Ship-Construction Times (Keel to Delivery) 71
6.4. Vendor Cost Increment Attributable to Production Gap 73
7.1. Anticipated Costs of Scheduled CVN 77 Availabilities, by Year 86
7.2. Net Present Value of CVN 77 Scheduled-Availability and Enlisted-Crew Costs, for Different Discount Rates 87
7.3. Anticipated Costs of Nimitz-Class Scheduled Availabilities, by Year ... 88
7.4. Net Present Value of Nimitz-Class Scheduled-Availability Costs, for Different Breadths of Application 89
7.5. Anticipated Costs of the Enlisted Crew for the Nimitz Class, by Year .. 90
7.6. Net Present Value of Nimitz-Class Enlisted-Crew Costs, for Different Breadths of Application 91
D.1. Effect of CVN 77 Start Date and Build Period on Total Shipyard Costs ... 113
D.2. Effect of CVN 77 Start Date and Build Period on Shipyard Labor Costs .. 114
D.3. Effect of CVN 77 Start Date and Build Period on Shipyard Fixed-Overhead Costs .. 114
D.4. Effect of CVN 77 Start Date and Build Period on Shipyard Costs for Contractor-Furnished Equipment 115
E.1. Labor-Demand Profiles for Various Projects in Newport News Shipyard 118
G.1. DCN Industrial Activities in France ... 139
G.2. Brest Ship Construction and Overhauls 141
G.3. French Naval Nuclear-Propulsion Organization 144
G.4. French Nuclear Reactors Safety Control Organization 144
J.1. Annual Direct Unit Costs for Each Nimitz-Class Ship, by Hull Number by Age 158
J.3. Annual Direct Depot Maintenance Costs for Each Nimitz-Class Ship, by Hull Number by Age 159
J.4. Annual Indirect O&S Costs for Each Nimitz-Class Ship, by Hull Number by Age 160
J.5. Annual O&S Costs for CVN 68, by Cost Category by Age 160
J.6. Annual O&S Costs for CVN 69, by Cost Category by Age 161
J.7. Annual O&S Costs for CVN 70, by Cost Category by Age 161
J.8. Annual O&S Costs for CVN 71, by Cost Category by Age 162
J.9. Annual O&S Costs for CVN 72, by Cost Category by Age 162
J.10. Annual O&S Costs for CVN 73, by Cost Category by Age 163
J.11. Annual Scheduled Ship Overhaul Costs, by Hull Number by Age ... 163
J.12. Annual Non-Scheduled Ship Repair Costs, by Hull Number by Age ... 164
J.13. Annual Fleet Modernization Costs, by Hull Number by Age 164
J.14. Annual Other Depot Costs, by Hull Number by Age 165
J.15. Annual Depot Maintenance Costs for CVN 68, by Age 165
J.16. Annual Depot Maintenance Costs for CVN 69, by Age 166
J.17. Annual Depot Maintenance Costs for CVN 70, by Age 166
J.19. Annual Depot Maintenance Costs for CVN 72, by Age 167
J.20. Annual Depot Maintenance Costs for CVN 73, by Age 168