This project began as a review of intelligence support to Army long-range planning. The study team first sought to identify who the Army long-range planners were and, more specifically, to answer three questions: (1) How is intelligence support to long-range planning performed? (2) What does the current planning system require from intelligence? and (3) What are the prospects for commercial information management technologies to improve intelligence support to long-range planning? Answering these questions involved reviewing intelligence documents and production records, doing case studies of three large and highly capitalized firms, conducting workshops to which planners and intelligence staff were invited, and canvassing consumers of futures intelligence—intelligence that attempts to anticipate future circumstances, conditions, and even foreign military postures.

Three groups of planners ultimately emerged as primary consumers of futures intelligence: the strategic planners, the acquisition community, and the force developers. The needs of these planning groups were in some ways quite distinct. The acquisition and force development people had significant needs for detailed, point estimates, while the strategic planners and their army reinvention colleagues were less interested in such specifics. Despite their differences, all these planning constituencies shared a common approach to planning, sometimes called capabilities-based planning. Capabilities-based planning tends to emphasize technology and, in some applications, to emphasize what U.S. technology can make available for Army application.
As the study progressed, it became clear that some intelligence consumers—principally threat integration staff officers who provide interface between intelligence and specific acquisition programs—were unhappy with the responsiveness of Army intelligence. Some worried about the quality of the intelligence, and others doubted that the U.S. Army’s Office of the Deputy Chief of Staff for Intelligence (ODCSINT) was customer oriented enough. Specific concerns and issues varied among the planners, but a common point of friction arose from the fact that intelligence is threat-based while the planners’ approaches were capabilities-based. More specifically, because the planners were more narrowly focused, they did not appreciate the potential for trouble that lurked in some of the assumptions implicit in their work, or Army intelligence’s value for helping to identify and develop responses to these dangers.

Besides diagnosing current points of friction between planners and their intelligence support, the study group examined possible ways that ODCSINT might improve its support to the planners. Three separate avenues emerged, one technical, one methodological, one conceptual.

The technical route is communications and connectivity technology that has the potential to improve connectivity between ODCSINT and its customers. The Army is already deeply invested in this field and the first benefits to Army intelligence have begun to appear, such as Intelink, a secure Internet-like computer system. But ODCSINT must act to ensure that the Army’s information technology (IT) technical architecture continues to develop in ways that will contribute greater connectivity and linkages between Army intelligence and its customers. This means ODCSINT must work closely with the Director for Information Systems of Command, Control, Communications, and Computers (DISC4) and others to understand customers’ needs and plan the necessary systems.

The methodological avenue leads to improved planner support by monitoring the important assumptions implicit and explicit in the planners’ approaches to their respective tasks. Since the planners tend to focus on the narrow aspects of capabilities-based planning, the broader, more encompassing threat orientation of Army intelligence can help protect the planners by identifying vulnerable as-
sumptions before they fail and helping the planners craft appropriate responses.

The conceptual avenue leads to improved planner support by recognizing that ODCSINT’s products are not solely its reports, but also its expertise, resident in human capital—its regional and functional experts. ODCSINT can improve its support to planners by providing for sustained interaction of its experts with its customers. Communications technology plays a role here, but the more important task is to make sure that ODCSINT continues to develop high-quality experts with sound reputations among Army planners and in the intelligence field.