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SUMMARY

In studying the relationship between an outcome variable y and
regressor variables x, we assume that the regression analysis is made
after a transformation of y, and that it is desired to reinterpret the
results in terms of a predictive scale. For example, we might consider
imposing a global treatment to all individuals in a target population
and attempt to estimate the average change in the expected outcome as
measured on the pfedictive scale, averaged over individuals in the
target population.

We propose two methods to rescale the transformed outcome variable
so that the estimated slope vector based on the rescaled transformation
can be interpreted on the predictive scale. Under mild regularity
conditions, the estimated slope vector based on the rescaled
transformation is consistent for the average slope vector on the
predictive scale. For a given target population, the average slope
vector measures the average rate of change in the mean response when the
regressor variables are perturbated and can be used to approximate the
average change in the expected outcome. Under further assumptions, the
prediction based on the rescaled transformation is consistent for the
best linear approximation to the response surface.

For the power transformation n = (yx-l)/k, if the predictive scale
coincides with the observed scale, then one of our rescaling methods is
analogous to the Jacobian normalization that Box and Cox (1964, 1982)
proposed; our method uses the harmonic mean of {yx-l}, while Box and
Cox's z transformation uses the geometric mean. Our method has the
useful interpretation in terms of the average slope vector on the

predictive scale.
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I. INTRODUCTION

We consider an outcome variable y, which is related to a row vector
of regressor variables x according to a linear model after a
transformation:

y=g(a + xB +¢e), & ~F(e), (1.1)
where g is the transformation function, assumed to be known and
invertible, a is the unknown intercept, B is the unknown slope vector,
and F is the unknown error distribution. We have assumed that the
stochastic errors & are identically distributed, but are not necessarily
normal or symmetric.

Given the transformation model (1.1), it is natural to transform
the observed outcome by the inverse transformation

n =g-1(y) =a+xB + ¢, (1.2)
and regress the transformed outcome n on the regressor x. For example,
we might use the ordinary least squares (OLS) estimate, or we might use
robust regression estimates such as the M-estimates.

In many situations, our ultimate goal is not just estimating the
linear model (1.2) on the transformed scale; instead, we want to
reinterpret the results in terms of a predictive scale

y* = h(y) = k(n), ' (1.3)
where h is a known transformation function (it might be the identity
function), and k denotes the composition of h and g. (See, e.g., Rubin,

1984; Carroll and Ruppert, 1984; Morris, 1984; and Rubin, 1984.)

In this Note we assume that a fixed treatment, denoted as a row
vector t, is to be applied to all members in a given target population,
and we want to estimate the expected change in the outcome y*, averaged
over individuals in the target population. For an individual with
characteristics x prior to the treatment, we assume that his
characteristics after the treatment would be x + t. We denote by %(t)
the expected outcome with treatment t, averaged over the target

population x ~ Q(x):



P(t) = E[k(e + (x + t)B + £)], (1.4)

where the expectation is taken with respect to the joint distribution
(x,8) ~ Q(x)F(e). (We assume that the regressor x is independent of
error € in the target population.) The expected outcome without the
treatment is given by ¢(0). The quantity of interest is D(t) = ¢(t) -
¥(0), which can be approximated by

D(t) = ¢(t) - ¥(0) = tVy(0). (1.5)

The gradient vector V¢ (0) on the righthand side of (1.5) has
several important properties. First, it can be seen from (1.5) that it
is the local rate of change for the expected outcome y(t), as the
treatment vector t varies near the null vector 0. Second, it can be
interpreted as the average of the slope vectors on the response surface,
as to be discussed in Section 2. Since this is a crucial
interpretation, we will refer to the gradient vector Vy(0) as the
average slope. Third, the average slope is usually proportional to the
slope vector B on the transformed scale. Assuming that the integration
and differentiation can be interchanged, we have

V¢ (0) B oSS k'(a + xB + &) dF(£)dQ(x)
B* E[k'(a + xB + £)]. ' (1.6)

1.1 Examples

There are many examples in which it is important to reinterpret the
regression results in terms of a predictive scale. As an example, in
acid precipitation studies, the acidity is usually measured and analyzed
on the pH scale, the logarithm of the concentration of the hydrogen ion.
It is very often necessary to reinterpret the results in terms of the
concentration scale.

As another example, we consider the RAND Health Insurance
Experiment (HIE), a longitudinal social experiment designed to study how
the generosity of health insurance affects medical expenditure. (See,
e.g., Duan, 1983; Duan et al., 1983; Newhouse et al., 1981.) In this
experiment, medical expenditures were observed on the dollar scale,
while the regression analysis was carried out on the logarithmic scale.

In order to assess the policy implications of the results, it is



necessary to reinterpret the regression analysis in terms of the dollar
scale.

The HIE enrolls a random sample of 2,756 families from six sites
across the United States, and assigns them to 14 different insurance
plans with varying generosity in coverage. The experiment reimburses
participants' insurance claims, thereby obtaining a measure of their
demand for health care. The outcome variable is the individual annual
medical expenditure. Since the outcome variable is fairly skewed, a
logarithmic transformation is taken. (A constant of $5 is added to the
annual expenditure to avoid taking the logarithm of zero.) The model is
therefore given as follows:

n = log(y + $§5) = a + xB + €. (1.7)
(The final analysis in the HIE was based on a model consisting of four
regression equations. We have used a substantially simpler model here.)

The first column of Table 1 gives the OLS estimate for the slope
vector f in the model (1.7) based on a subset of the HIE sample. In
order to avoid dealing with intracluster correlation in this example, we
have restricted to the first year of the experiment and have restricted
to one randomly chosen member from each family. The main explanatory
variable of interest is the log coinsurance rate (LC), which measures
the generosity of the insurance coverage. (More precisely, the opposite
of the generosity.) The variable is defined to be the logarithm of 100%
plus the coinsurance rate, and ranges from zero (zero coinsurance rate)
to 0.69368 (100% coinsurance).

Based on the results reported in Table 1, we can predict that when
the log coinsurance rate increases by A, the expected log annual
expenditure will decrease by 0.96A. However, the main interest in the
HIE is not in the expected log annual expenditure. The main question of
interest for the policy decisions is how much the expected annual
expenditure (on the dollar scale) would decrease if the log coinsurance
rate increases by A.

In terms of the notations given earlier, the treatment vector is
given by t = <A,0,...,0>, the goal is to estimate the expected change
D(t) = ¢(t) - $(0). It is necessary to specify a target population, x ~

Q(x), in order to answer the policy question posed above: for the same



Table 1

SLOPE VECTORS FOR THE HIE DATA

Regressor B Aﬁa Bﬁb

LCc -0.959 -195.75 -169.83
Age 0.015 3.01 2.61
Female 0.500 102.19 88.66
Log incomed 0.507 103.53 89.82
Health® -2.945  -601.37  -521.74

a

b .
The average slope vector based on the § transformation.

The average slope vector based on the d transformation.

®The logarithm of (100% + coinsurance rate).
The logarithm of annual family income.

A general measure of health.

change in the log coinsurance rate, different target populations might
have different changes in the expected expenditure. For this example,
we take the target population to be the subset of HIE participants
enrolled in an insurance plan that provides free medical care.

One way to estimate D(t) is to go through a formal retransformation
procedure for each individual in the target population. For each
individual, we predict his expected annual expenditure twice, first
based on his original log coinsurance rate, then based on the
perturbated log coinsurance rate. This can be done, e.g., using the
smearing estimate proposed in Duan (1983) or the approximation method
proposed in Taylor (1986). The difference is the change in his expected
annual expenditure. The average of the differences over all individuals
in the target population is the change in the-expected annual
expenditure for the target population. The first column of Table 2
gives the predicted changes based on the smearing estimate when the log

coinsurance rate increases from zero to A.



-5 -

Table 2

PREDICTED CHANGES IN THE EXPECTED MEDICAL EXPENDITURE

Smearing d 8
A ($) transformation transformation
0.01 -2.01 - =1.96 -1.70
0.05 -9.88 -9.79 -8.49
0.10 -19.29 -19.58 -16.98
0.25 -44.98 -48.94 -42.46
0.50 -80.37 -97.88 -84.92
1.00 -130.13 -195.75 -169.83

The retransformation approach described above can be laborious if
the target population is large. It might even be infeasible if we do
not have access to individual level data in the target population. For
the logarithmic transformation, the effect of varying the regressor
variables is multiplicative on the original scale, therefore we can
calculate the average difference without using individual level data.
For other transformations, we usually need individual level data in

order to calculate the average difference.

1.2 Rescaling

As an alternative to the retransformation approach, we can
approximate the expected change in the outcome, D(t), using the
righthand side of (1.5), tV$(0). In the sampling case, we need to
estimate the average slope V¢ (0). Since the average slope V¢(0) is
usually proportional to B according to (1.6), we need only estimate B
from the linear model (1.2), then multiply the estimated slope vector by
the appropriate proportionality constant. This can also be achieved by
multiplying the transformed outcome variable n by the same constant. In
order to consider predictions along with interpreting slope vectors, we
will also consider location shifts. More specifically, we define a
rescaling of the transformed outcome variable n to be a linear

transformation of the following form:



d(n) =L + n/S,
where L and S are scalars to be determined. For example, Box and Cox
(1964, 1982) proposed to. rescale the power transformation

n = (-1 °
by the Jacobian §X-1’ where y denotes the geometric mean of the observed
outcome data {yl,...,yn}. This is equivalent to the rescaling defined

above with L = 0 and S = §X-1_

According to (1.6), the appropriate scalar S should be an estimate
for 1/E(k'). The scalar § = §k-1 in Box and Cox's Jacobian rescaling
usually does not satisfy this requirement, therefore the slope vector
for their rescaled transformation does not estimate the average slope
and cannot be used to approximate the expected outcome change D(t).

Alternatively, we propose two methods in Section 3 to rescale the
transformation, based on two different estimators for E(k'). For the
HIE, the estimated average slope vectors based on the two rescaling
methods are given as the second and third columns of Table 1. The
approximate predicted outcome changes based on (1.5) are given as the
second and third columns of Table 2. For small and moderate
perturbations in the log coinsurance rate (A < 0.25), the approximation
is fairly accurate, especially for the first rescaling method. A key
condition for the second rescaling method, (A5), does not hold for the
HIE data (see, e.g., Duan et al., 1983). For large perturbations in the
log coinsurance rate (A 2 0.25), the approximations can be poor, since
the linear approximation in (1.5) is poor.

The rescaling methods proposed in Section 3 also impose location
shifts on the transformed outcome variable. In the latter part of
Section 3, we discuss using the rescaled transformations to estimate the

best linear approximation to the response surface.



I1. AVERAGE SLOPE

In this section, we consider the population case: we observe (y,x),
which follows the transformation model (1.1), and attempt to reinterpret
the linear model (1.2) in terms of the predictive scale. First, we
discuss several concepts related to reinterpreting (1.2).

The response surface v(x) = E(y*]x) is the conditional expectation
of the outcome on the predictive scale for a given design point x. (We

are interested here in predicting the mean outcome instead of some other

ot
”

summary of the conditional distribution of y given x. For the HIE,
this is the relevant estimand of interest. For budgetary
considerations, we are interested in the per capita expenditure, which
suggests a focus on the prediction of the mean expenditure.)

If a treatment t is applied to an individual with characteristics
x, the expected change in his outcome is v(x + t) - v(x), which can be
approximated by

vix +t) - v(x) = tWu(x).

The gradient vector Vv(x) can be interpreted as the local effect of the
regressor variables on the outcome y* at the design point x. This
vector is referred to as the pointwise slope at the design point Xx.
Figure 1 illustrates the response surface, the pointwise slopes, and the
average slope, which will be defined later.

A comprehensive way to understand the effects of the regressor x on
the outcome y* is to give a complete description of all pointwise
slopes. However, this might be laborious. Furthermore, even if a
complete description is available, it would still be useful to summarize
the pointwise slopes for easy comprehension. We therefore consider the
average slope, which is defined to be the expectation of the pointwise
slopes with respect to a given target population. More specifically,
the average slope is E[Vv(x)], where the expectation is taken over the

target population x ~ Q(x). The average slope is therefore the average

ot
w

of the local effects of the regressor on the outcome y .
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v (x): response surface (at x)
Vv (x). pointwise slope at x

E [V (x)]: average siope (averaged over x)

Fig. 1 -- Response Surface, Pointwise Slopes, and Average Slope



A result will be established later in this section (Proposition
2.1) that relates the average slope as defined above with the gradient
vector V¢(0) given in (1.5). We will also give an alternative
expression for the proportionality constant E(k') in (1.6). The results

require several regularity conditions, which are listed below.

Assumptions

(A1) The transformations g and h in (1.1) and (1.3) are known; g
is invertible; the composition

k(n) = h(g(n)) (2.1)

is differentiable, where n = g-l(y) is the transformed scale on which

wle
"

the linear model (1.2) holds; the expectation E(y*|x) exists, where y =
h(y) is the predictive scale (1.3).

(A2) The expectation E[k'(n)|x] exists; integration and
expectation can be interchanged below:

Du J k{(u +¢) dF(e) =J k'(u + &) dF(e), (2.2)

where Du denotes the partial derivative with respect to u.

(A3) In the target population, the regressor variables x and the
érror ¢ are sampled randomly from a joint distribution Q(x)*F(e); the
expectation E[k'(n)] exists, where the expectation is taken over the

joint distribution (x,g) ~ Q(x)*F(e).]|

Proposition 2.1: For a random vector (y,x), which follows the

transformation model (1.1), we have the following results.

(1) Under assumption (Al), the response surface depends on x only
through x8:

v(x) T E(y %) = 1(xB), (2.3)
where 1(u) = J k(e + u + &) dF(e).

(2) Under assumptions (Al)-(A2), the pointwise slope on the response
surface has the following expression:

Vv(x) = B * E[k'(n)[x]. (2.4)
(3) Under assumptions (Al)-(A3), the average slope on the response

surface has the following expression:



- 10 -

E[Vw(x)] =8 * E[k'(m)].] (2.5)
(The proof is straightforward.)

It follows from the proposition that both the pointwise slopes and
the average slope on the predictive scale are proportional to the slope
vector B on the transformed scale, therefore the ratio Bj/Bk is
identical to the corresponding ratio in either the pointwise slope or
the average slope, provided that the proportionality constant E[k'(n)]x]
or E[k'(n)] is nonzero. (The 1attér condition is satisfied, e.g., if
the transformation k is strictly monotonic.) In other words, those
ratios can be interpreted directly and simultaneously on the transformed
scale, the original scale, and the predictive scale.

According to (3) and (1.6), the average slope E[Vv(x)] as defined
above is identical to the gradient vector V¢(0) in (1.5), therefore it
can be interpreted as the local rate of change for the expected outcome
$(t) and can be used to approximate the expected outcome change using
(1.5).

The following corollary gives an alternative expression for the

proportionality constant in (2.5).

Corollary 2.1: The proportionality constant in (2.5) has the following
expression

E[k'(1)] = Cov(y",n)/Var(n) | (2.6)
under conditions (A1)-(A3) and the following conditions:

(A4) The transformation k in (2.1) is absolutely continuous with
respect to the Lebesgue measure.

(A5) The transformed dependent variable n is normal. |

(Proof) The result is a direct application of the following integration-

by-parts lemma (see, e.g., Stein, 1981):

Lemma 2.1: Let u be a N(u,6%) real random variable and let the real-
valued function g(u) be the indefinite integral of the Lebesgue

measurable function g'(u). Assume that E|g'(u)| < « . Then
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E{g'(u)] = Cov(u,g(u))/Var(u).|

The alternative expression for the proportionality constant given
by the corollary is the regression of y* on n. In other words, the
average slope can be interpreted as a combination of two regressions:
first we regress y* on 1, thén we regress N on Xx. Duan and Li (1985,
Theorem 1) generalized a result in Brillinger (1982) and showed that the

two regressions can actually be combined into one:

Proposition 2.2: The OLS regression of y* = h(y) on x is comnsistent for
B'Cov(y*,n)/Var(n), under conditions (Al)-(A3) and the following
condition:

(A6) The regressor variables x have linear conditional
expectations, i.e., for any linear combination xb, the conditional

expectation E(xb[xB) is linear in xB.
(The proof is given in the appendix.)

Condition (A6) is satisfied if the distribution of x is normal or
elliptically symmetric.

This result is not necessarily restricted to the regression of y*
on x, and is valid for any transformation of y, say, q = q(y). For
example, we might have used the wrong transformation q instead of g-l to
linearize the model; as a result, we no longer obtain a consistent
estimate of . However, the OLS regression of q on x is consistent for
BeCov(q,n)/Var(n), under conditions (A1)-(A3) and (A6). Hence, we still

obtain a consistent estimate for the direction of B.

Remark 2.1: The identity V¢$(0) = E[Vv(x)] is not restricted to the
transformation model (1.1). Actually, it requires only that integration
and differentiation be interchangeable. Therefore, the average slope
E[Vv(x)] can be used to approximate the expected outcome change D(t)

using (1.5) in very general situations.
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Remark 2.2: By Lebesgue's dominated convergence theorem, the
differentiation and integration in (2.2) can be interchanged if, for any
constant a, we can find a positive constant b and a function q such that
[k'(u + )| < q(e), E[q(e)] < =,
for all u that satisfies a - b <u<a+b. (See, e.g., Burrill, 1972,
p- 119.) Consider, for example, the power transformations k(n) = nc
For ¢ - 1 > 0, we have the upper bound
[kK'(u + g)] < czc-l . {max[la-blc-l,la + b|c-1] + lslc-l};
the upper bound has a finite expectation if the (¢ - 1)-st moment for &

exists.
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I1l. RESCALING

In this section, we consider the sampling case: a sample

{(yi,xi),i =1,...,n} from the transformation model (1.1) is observed.

We take the transformation n = g-l(y) on the outcome variable, and
regress N on x. It is assumed that

(A7) the estimated slope b based on regressing the transformed
outcome n on the regressérs x is consistent for the slope B on the
transformed scale.

This condition would be satisfied under appropriate regularity
conditions on the error distribution F and the design matrix X =
! ,X_']"'. For example, for the OLS estimate, the condition is

1?27 n
satisfied if E(g) exists and X'X/n converges to a nonsingular matrix.

[x

In order to estimate the average slope on the predictive scale, we
also need to estimate the proportionality constant in (2.5) or (2.6).

We assume that we have a random sample from the target population,
{(yoj,xoj),j =1,...,m}, which follows the transformation model (1.1)
with x ~ Q(x). We can then estimate the proportionality constants from
this sample. ‘

The two samples described above might be the same, but they need
not be so. In order to distinguish between the two, we will refer to
the first sample on which we estimate the slope as the estimation
sample, and refer to the second sample on which we estimate the
proportionality constant as the prediction sample. In the HIE example,
participants from all insurance plans were used to estimate the slope,
but we restricted to the participants enrolled in the free plan to
estimate the proportionality constants, i.e., the free plan participants
are taken as the target population.

The proportionality constant E[k'(n)] in (2.5) can be estimated
from the prediction sample consistently by the sample average

A= m'lzjk'(noj), (3.2)

where an = g-l(YOj)' It follows that the rescaled estimated slope Ab

is consistent for the average slope on the predictive scale.
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Similarly, the righthand side of (2.6) can be estimated

consistently by the OLS regression of y* on n:

B = Cly ,n)/S(n), (3.3)
where C(y*,n) denotes the sample covariance between y* and n, and S(n)
denotes the sample variance of n, both based on the prediction sample.
It follows that the rescaled estimated slope Bb is consistent for the
average slope on the predictive scale.

Instead of rescaling the estimated slope, we can also rescale the
transformed outcome n = g-l(y) by the multiplicative scalar A in (3.2)
or B in (3.3) before applying the regression analysis. The rescaled

transformation is referred to as the d and 6§ transformations:

d; = M(y') + A*(n, - M), (3.4)
51=M(Y)+B°(T]i'n), (3.5)
where M(y ) denotes the sample average of y . (We discuss the location

shifts in (3.4) and (3.5) in the latter part of this section.) The
rescaled transformations can be interpreted as linear approximations to
the transformation k. Note that the measurement units for the d and §
transformations are the same as the unit for the predictive scale y*.
Note also that the § transformation is the OLS prediction for y* based
on the regression of y* on 7.

In order to relate the estimated slopes based on the rescaled
transformations d and § to the estimated slope based on the
transformation n, we assume that

(A8) the regression estimate preserves location and scale, i.e.,
when we regress the rescaled outcome L + n/S on the regressor x, the
estimated intercept and slope are, respectively, L + a/S and b/S, where
a and b are the estimated intercept and slope based on regressing n on
X.

' This condition is obviously satisfied for the OLS estimate. It is

also satisfied for robust regression estimates that allow an adaptive

scale parameter.
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Under condition (A8), the estimated slopes based on d and § are,
respectively, Ab and Bb. We have assumed in (A7) that the estimated
slope on the transformed scale is consistent for B. The sample
estimates A and B are consistent for the corresponding proportionality
constants. Therefore, the estimated slopes based on d and § are
consistent for the average slope. The following proposition summarizes

the above discussions.

Proposition 3.1: Given an estimation sample
{(yi,xi),i =1,...,n} from the transformation model (1.1), and a
prediction sample {(Yoj,xoj),j =1,...,m} from model (1.1) with x ~

Q(x), we have the following results.

(1) When we regress the rescaled transformation d in (3.4) on the
regressor X, the estimated slope b(d) is consistent for the average

slope on the predictive scale under conditions (A1l)-(A3) and (A7)-(A8).

(2) When we regress the rescaled transformation 8§ in (3.5) on the
regressor X, the estimated slope b(8) is consistent for the average
slope on the predictive scale under conditions (A1)-(A5) and (A7)-(A8).]|

For the power transformation n = (yx - 1)/X, Box and Cox (1964)
proposed to rescale n by the Jacobian §X-1 into the z transformation:

2, = v, - LAY,
where y denotes the geometric mean of {yi}. Box and Cox (1982), Box and
Fung (1983), and Hinkley and Runger (1984) gave further recommendations
on the use of the z transformation in their discussions of Bickel and
Doksum (1981). Duan (1986) proposed a location shift to the z
transformation:

o=+ o) - Tt
Note that ¢ has the same unit as y, while z does not have a meaningful
unit. (The difference between z and { is irrelevant for estimating the
slope.)

The rescaling in the z and ¢ transformations implicitly assumes

that the observed scale y is the predictive scale, i.e., h is the

identity function in (1.3), and that the prediction sample is identical
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to the estimation sample. Under these assumptions, the d transformation
(3.4) for the power transformation is given as follows:

Yo e mogth T,

where M(£(y)) = n'lzif(yi).

di=y+[yi

Instead of rescaling the power transformation n = (yx-l)/k by the
geometric mean of {yx-l} as in the z and ¢ transformations, in the d

transformation we rescale n by the harmonic mean of {yx_l

}. According
to Proposition 3.1, the d and the 8 transformations have the useful
interpretation that the estimated slopes based on those rescaled
transformations consistently estimate the average slope on the
predictive scale; the z and { transformations do not have such
interpretations.

We have adjusted the location as well as the scale in the d and §
transformations. The location shift is irrelevant for the estimation of
slopes; under condition (A8), the estimated slopes are invariant to
location shifts. We now consider the implications of the location shift
in terms of making predictionms.

For any given design point x., the linear prediction based on the d

>
or § transformation is consistentofor the following linear approximation
to the response surface (2.3):
p(xy) = E(Gr) + [x,E(x)] * B * E[K' ()], - (3.6)
under the conditions in Proposition 3.1 and the following condition:
(A9) The regression estimate preserves the mean asymptotically,
i.e., 7 - (a + Xb) converges to zero, where a and b are the estimated

intercept and slope based on regressing n on x; n and X are the sample

averages taken over the prediction sample.

Condition (A9) is obviously satisfied for the OLS estimate. It is not
usually satisfied for robust regression estimates. However, the robust
regression estimates can be modified to satisfy this condition: We can
use the estimated slope b based on the robust method and estimate the
intercept by n - xb.

The hyperplane p(xo) passes through the center of mass
(E(y*),E(x)); its slope is the average slope on the response surface.

The following proposition indicates that it is a good linear

approximation to the response surface.
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Proposition 3.2: Under conditions (Al)-(A6), the hyperplane (3.6) is
the best linear approximation to the response surface v(x) = E(y*lx) in
the sense of minimizing the mean squared error

E[(v(x) - (a + xb))?]
over a and b, where the expectation is taken over the target population

x ~ Q(x).|
(The proof is given in the appendix.)

Remark 3.1: It is not necessary for the error distribution F(g) to be
the same in the estimation and the prediction samples. It is not
necessary for the transformations to be the same in the two samples,
either. It is necessary only that the two samples have the same slope
on their respective transformed scales. All we need, in essence, is to
estimate B on the estimation sample's transformed scale and estimate the
proportionality constants using (3.2) or (3.3) for the prediction
sample.

Remark 3.2: If we observe the regressor x..'s for the prediction

sample, but do not observe the correspondingjoutcome yoj's, we can still
estimate the proportionality constants if we assume that the error
distribﬁtions in the two samples are the same, so that we can combine
the regressor distribution in the prediction sample with the error
distribution based on the estimation sample. For example, we can
estimate the proportionality E(k') in (2.5) as follows:

A" = (mn)! By kGt xgb + e,

0
where a and b are the estimates for o and B, and e is the i-th
residual, based on fitting the linear model (1.2) to the estimation

sample.

Remark 3.3: We would like to thank David Wallace for his suggestion to
consider secant instead of tangent linearizations of the power
transformations. Note that { is a tangent linearization .to the curve

(y,yx), while d and § are both secant linearizationms.
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APPENDIX

We provide a new proof for Propositions 2.2 and 3.2 below that is
shorter than the earlier proof in Duan and Li (1985) and the related
proof in Brillinger (1982).

The OLS regression of q = q(y) on x is consistent for the solution
to the following minimization problem:

Minimize R(a,b) = E(a + xb - q)2 over a, b.

By Jensen's inequality, we have

R(a,b) = E{E[(a + xb - q)*[xB,¢])

E{(a + E[xb]|xB] - q)z}.

By Condition (A6), the conditional expectation in the square bracket is

v

linear in xB, therefore the minimizer for R has the form (a,cB), where a
and c are scalars to be determined. The optimal values of a and ¢ can
be determined from the equations

dR/%a = 0, 8R/3c = O,
from which it follows that the optimal values are

c

*

a

Cov(q,n)/Var(n),
E(q) - ¢ *E(xB).

The optimal value of ¢ given above establishes Proposition 2.2 in the

general case for the OLS regression of t on x. Fﬁrthermore, under
conditions (A4) and (A5), we have identity (2.6); this establishes

Proposition 3.2.
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