ON CERTAIN GAMES WITH TRANSCENDENTAL VALUES

Oliver Gross

P-188

November 13, 1950
On Certain Games with Transcendental Values

Oliver Gross

Let \(\Gamma \) be a two person zero-sum game for which the compact pure strategy spaces, \(S_1 \) and \(S_2 \), and the payoff function \(M \), defined over \(S_1 \times S_2 \), are definable in Tarski's system of "elementary algebra" (see [1]). Suppose, also, that \(\Gamma \) has a value which is a transcendental number. We can then conclude that there is no optimal strategy for either player consisting of a step function of finitely many steps (i.e. a distribution in which the probabilities are all concentrated on a finite set of points). For, suppose the contrary for one of the players, say the maximizing one. Then, for some positive integer \(m \), the value of \(\Gamma \) is given by

\[
v = \max_{\langle \alpha_1, \ldots, \alpha_m \rangle \in \mathcal{S}_m} \max_{x_1, \ldots, x_m \in S_1} \min_{y \in S_2} \sum_{i=1}^{m} \alpha_i M(x_i, y),
\]

where \(\mathcal{S}_m \) is the set of all \(m \)-tuples \(\langle \alpha_1, \ldots, \alpha_m \rangle \) such that \(\alpha_i \geq 0 \) for \(i = 1, \ldots, m \), and \(\sum_{i=1}^{m} \alpha_i = 1 \). But, according to [1], \(v \) would be algebraically definable, and it is a principal result of [1] that every algebraically definable number is algebraic.

In particular, our result applies to any game with transcendental value, in which \(M \) is a continuous rational function with integral coefficients.
Example: Take \(M(x, y) = \frac{(1+x)(1+y)(1-xy)}{(1 + xy)^2} \), \(S_1 = \{ x| 0 \leq x \leq 1 \} \), and \(S_2 = \{ y| 0 \leq y \leq 1 \} \). Here, \(\nu = \frac{\lambda}{\pi} \), and a pair of distribution functions yielding this value is given by:

\[
\begin{align*}
F^*(x) &= \frac{\lambda}{\pi} \arctan \sqrt{x} \\
G^*(y) &= \frac{\lambda}{\pi} \arctan \sqrt{y}
\end{align*}
\]

Thus, in this game, there is no optimal strategy consisting of a step function of finitely many steps, for \(\pi \) is a transcendental number.

Reference