A SOLUTION CONTAINING
AN ARBITRARY CLOSED COMPONENT

By

Lloyd S. Shapley

p–888

July 3, 1956
An n-person game solution is constructed around an arbitrary closed set, showing that there is practically no limit to the possible complexity of solutions.
A SOLUTION CONTAINING AN ARBITRARY CLOSED COMPONENT

A class of n-person game solutions is described in this note which consist of an arbitrary closed subset, J, of a certain \((n - 3)\)-dimensional region of the fundamental simplex, together with one other closed set, \(K - H\), depending on but disjoint from J. The arbitrariness of J illustrates the great variety of solution sets that are possible in the von Neumann-Morgenstern theory, and provides a ready source of examples, pleasant and pathological, for the testing of conjectures about the topological properties of solutions in general.

Let \(N = \{1, \ldots, n\}\) be the set of players, \(n \geq 4\). We shall consider the simple game with winning coalitions \(N - \{1\}\), \(N - \{2\}\), \(N - \{3\}\), and \(N\).* In the 0-1 normalization, the imputation space \(A\) is the simplex of nonnegative \(n\)-tuples \(\alpha = <\alpha_1, \ldots, \alpha_n>\) with sum 1. Let \(\text{dom}_k \beta\) denote the set of \(\alpha \in A\) with \(\alpha_i < \beta_i\), all \(i \neq k\). Then the set of imputations dominated by \(\beta\) is

\[
\text{dom} \beta = \text{dom}_1 \beta \cup \text{dom}_2 \beta \cup \text{dom}_3 \beta,
\]

and the defining properties of a solution \(V\) can be expressed

\[
V \cap \text{dom} V = \emptyset \quad \text{and} \quad V \cup \text{dom} V = A,
\]

where, of course, \(\text{dom} V\) denotes \(\sup_{\beta \in V} \text{dom} \beta\).

*It can be described as a direct product of the simple majority game on \(\{1, 2, 3\}\) and the pure bargaining (or "unanimous") game on \(\{1, \ldots, n\}\).
We shall now define the sets J, K, and H referred to above. Let U be the simplex of nonnegative $(n-3)$-tuples $u = (u_4, \ldots, u_n)$ with sum ≤ 1. Let u_0 denote the difference $1 - \sum_{j=4}^{n} u_j$, and let U_0 be the face of U on which $u_0 = 0$. Let C be an arbitrary, closed set in $U - U_0$, and let J be the image of C under the one-one map:

$$(u_4, \ldots, u_n) \longleftrightarrow <0, \frac{u_0}{2}, \frac{u_0}{2}, u_4, \ldots, u_n>$$

of U into A. This is the "arbitrary" part of the solution.

Let ρ be the distance function in U:

$$\rho(u, w) = \sum_{j=4}^{n} |u_j - w_j|$$

and let $\rho(u, W) = \inf_{w \in W} \rho(u, w)$ for sets W in U. Note that

$$\rho(u, W) \leq \rho(u, v) + \rho(v, W),$$

and that $\rho(u, U_0) = u_0$ for all $u \in U$.

The set K can now be defined; it consists of all imputations of the form:

$$<\frac{u_0 - \rho(u, \bar{C})}{2}, x, y, u_4, \ldots, u_n>, \ u \in U,$$

where $\bar{C} = C \cup U_0$. Observe that the first component is always nonnegative, and that the sum of the second and third is determined by u; they run between 0 and $u_0 + \lceil \rho(u, \bar{C}) \rceil/2$, sweeping out a line segment for each fixed u in $U - U_0$. Thus K is a continuous hypersurface of dimension $n-2$, separating
A into two parts. It is disjoint from J since any imputation in J ∩ K would have u ∈ C and u₀ - ρ(u, C) = 0, implying both u₀ ≠ 0 and u₀ = 0.

Finally, H is defined as K ∩ dom J, the part of K dominated by J. Since α₁ = 0 in J, we have H = K ∩ dom₁ J. We shall show that J ∪ (K - H) is a solution.

Our construction is illustrated in Figure 1 for n = 4. J consists of two dots and a dash, so spaced as to make the "holes" H clearly visible. An inspection of the horizontal cross-sections shows a relationship between our solutions and the familiar symmetric and discriminatory solutions of the 3-person simple majority game. (The dotted lines are medians.)

The proof that J ∪ (K - H) is a solution is most conveniently presented as a series of "corrections" to the near-solution K. Thus, putting V₁ = K, we shall show

(I) \(V₁ ∩ \text{dom } V₁ = ∅ \)

(II) \(V₁ ∪ \text{dom } V₁ = A - J. \)

Putting \(V₂ = V₁ ∪ J \), we shall find

(III) \(V₂ ∩ \text{dom } V₂ = H \)

(IV) \(V₂ ∪ \text{dom } V₂ = A. \)

Finally, \(V₃ = V₂ - H \) will give us the desired result

(V) \(V₃ ∩ \text{dom } V₃ = ∅ \)

(VI) \(V₃ ∪ \text{dom } V₃ = A. \)
since \((K \cup J) - H = J \cup (K - H)\).

Proof of I: \(K \cap \text{dom } K = \emptyset\).

Suppose \(\alpha \in \text{dom } \beta\), with \(\alpha, \beta \in K\):

\[
\alpha = \left< \frac{u_0 - \rho(u, \overline{c})}{2}, x, y, u_1, \ldots, u_n \right>,
\]

\[
\beta = \left< \frac{w_0 - \rho(w, \overline{c})}{2}, x', y', w_1, \ldots, w_n \right>.
\]

Then \(u < w\) (in all components), and \(\rho(u, w) = u_0 - w_0\). If \(\alpha \in \text{dom}_1 \beta\) then \(x + y < x' + y'\), or

\[
\frac{w_0 + \rho(w, \overline{c})}{2} > \frac{u_0 + \rho(u, \overline{c})}{2},
\]

giving the contradiction \(\rho(w, \overline{c}) > \rho(u, w) + \rho(u, \overline{c})\). But if \(\alpha \in \text{dom}_2 \beta\) or \(\alpha \in \text{dom}_3 \beta\), we have

\[
\frac{w_0 - \rho(w, \overline{c})}{2} > \frac{u_0 - \rho(u, \overline{c})}{2},
\]

giving the contradiction \(\rho(u, \overline{c}) > \rho(u, w) + \rho(w, \overline{c})\).

Proof of II: \(K \cup \text{dom } K = A - J\).

Given \(u \in U\), let \(A(u)\) be the crosssection of \(A\) consisting of points of the form \(\left< \alpha_1, \alpha_2, \alpha_3, u_1, \ldots, u_n \right>\). Define \(K(u) = K \cap A(u)\); it is a single point if \(u \in U_0\), otherwise it is a line segment parallel to the \(\alpha_1 = 0\) face of \(A(u)\), not more than halfway from that face to the opposite vertex (see Figure 2). Define \(L(u) = A(u) \cap \overline{\text{dom } K(u)}\), where "\overline{\text{dom}}" is taken
with respect to the two-person sets \(\{1,2\} \), \(\{1,3\} \), and \(\{2,3\} \).

(The "\(\text{dom} \)" pattern in \(A(u) \) is the same as the domination pattern of the 3-person simple majority game.) It is clear that \(K(u) \) and \(L(u) \) are disjoint and exhaust \(A(u) \), except in the extreme case \(K(u) = QR \) (see the figure), when the point \(P \) is not covered. But the extreme case occurs only when \(p(u, \bar{C}) = 0 \) and \(u \notin U_0 \) — that is, precisely when \(u \in C \) — and we see that the uncovered point is an element of \(J \). To sum up, if \(\alpha \) is an arbitrary point of \(A \), then it is either in \(J \), in \(K \), or in \(L(u) \) for some \(u \notin U_0 \). If the latter, we have in fact \(\alpha \in \text{dom} K \), since we can pick \(u' > u \) and have \(\alpha \in \text{dom} K(u') \) by making the differences \(u'_j - u_j \) sufficiently small, by the uniform continuity of \(p \). Thus \(J \cup K \cup \text{dom} K = A \), and half of
our result, namely: $K \cup \text{dom } K \supseteq A - J$, has been established.

To prove the reverse inequality: $K \cup \text{dom } K \subseteq A - J$, it suffices to show that J and $\text{dom } K$ are disjoint. Suppose therefore that $\alpha \in \text{dom } \beta$ where $\alpha \in J \cap A(u)$, $\beta \in K \cap A(w)$ for some $u, w \in U$. If $\alpha \in \text{dom}_1 \beta$, then we would have $\alpha_1 > \beta_1$, impossible since $\alpha_1 = 0$. If $\alpha \in \text{dom}_2 \beta$, then $\alpha_3 < \beta_3$ and $u < w$, by definition. But $\alpha_3 = u_0/2$ and $\beta_3 \leq \lfloor w_0 + \rho(w, \bar{c}) \rfloor/2$, hence $\rho(w, \bar{c}) > u_0 - w_0 = \rho(w, u)$. This is also impossible, since $u \in C$. The case $\alpha \in \text{dom}_3 \beta$ is similar. This completes the proof.

Proof of III: $(K \cup J) \cap \text{dom } (K \cup J) = H.$

Expanding the left member of III, we have

$$(K \cap \text{dom } K) \cup (K \cap \text{dom } J) \cup (J \cap \text{dom } K) \cup (J \cap \text{dom } J).$$

The first term is empty by I; the second is H by definition; the third is empty by II. It remains to show that the fourth is empty. But this is trivial, since $\alpha \in \text{dom } \beta$ implies $\alpha_1 \neq \beta_1$, whereas $\alpha_1 = 0$ in J.

Proof of IV: $(K \cup J) \cup \text{dom } (K \cup J) = A.$

Immediate, by II. (This is the trivial step of the first "correction.")

Proof of V: $[\overline{J \cup (K - H)}] \cap \text{dom } [J \cup (K - H)] = \emptyset.$

Immediate, by III. (This is the trivial step of the second "correction.")
Proof of VI: \[j \cup (K - H) \] \cup \text{dom} \[j \cup (K - H) \] = A.

We intend to prove that both \(H \) and \(\text{dom} H \) are contained in \(\text{dom} [j \cup (K - H)] \). Then the left member of VI can be written:

\[[j \cup (K - H)] \cup H \cup \text{dom} [j \cup (K - H)] \cup \text{dom} H, \]

which is equal to \(A \), by IV. We shall show in particular that \(H \) and \(\text{dom}_1 H \) are contained in \(\text{dom} J \), and that \(\text{dom}_2 H \) and \(\text{dom}_3 H \) are contained in \(\text{dom} (K - H) \). First, by definition, we have \(H \subseteq \text{dom} J \); also:

\[\text{dom}_1 H \subseteq \text{dom}_1 (\text{dom} J) = \text{dom}_1 (\text{dom}_1 J) \subseteq \text{dom}_1 J \subseteq \text{dom} J, \]

using the transitivity of "dom". (The last two inclusions are actually equalities.) This leaves \(\text{dom}_2 H \) and \(\text{dom}_3 H \).

Suppose that \(\gamma \in \text{dom}_2 \beta, \beta \in H \). Define \(\beta' \) by

\[
\begin{cases}
\beta'_1 = \beta_1, & \beta'_2 = 0, & \beta'_3 = \beta_2 + \beta_3, \\
\beta'_j = \beta_j, & j = 4, \ldots, n.
\end{cases}
\]

Then \(\beta' \), like \(\beta \), is in \(K \), and clearly \(\alpha \in \text{dom}_2 \beta' \). However, \(\beta' \) is not in \(H \). Indeed, if it were, there would be \(\gamma \in J \) with \(\beta' \in \text{dom} \gamma = \text{dom}_1 \gamma \) and we would have:

\[
\begin{align*}
\beta'_1 &= \beta'_1 + \beta'_2 = 1 - \sum_3^n \beta'_j > 1 - \sum_3^n \gamma_j = \gamma_1 + \gamma_2 \\
&= \gamma_2 = \gamma_3 > \beta'_3 = \beta'_2 + \beta'_3;
\end{align*}
\]

which is an impossible inequality for \(\beta' \in K \). Hence
\(\text{dom}_2 H \subseteq \text{dom}_2 (K - H) \). Similarly \(\text{dom}_3 H \subseteq \text{dom}_3 (K - H) \). This completes the proof.

Remarks.

(1) It is easy to see that \(K - H \) is a connected set, by considering imputations like the \(\beta' \) of the last proof.

(2) Our particular games are not constant-sum, but their constant-sum extensions \((n + 1)\) players\) will possess discriminatory solutions that are essentially the same as those we have constructed. There is no reason to believe that solutions with arbitrary closed components cannot be found in a much wider class of games — perhaps in almost all games.

(3) It would be interesting to know of more general situations in which the method of successive corrections:

\[
V_{n+1} = (V_n - X) \cup Y
\]

where \(V_n \cap \text{dom } V_n = X, \ V_n \cup \text{dom } V_n = A - Y, \) can be shown to lead to a solution.

(4) Two interesting questions regarding cardinality are not answered by our present example, since \(K - H \) is always uncountable, namely: Do countably infinite solutions ever occur? Is there an upper bound (say \(2^n \)) to the number of imputations in a finite solution?