Strategic Mobility Alternatives for the 1980s: Vol. 1, Executive Summary

W. E. Hoehn, Jr., R. L. Perry, J. R. Gebman
with A. A. Barbour, J. H. Hayes,
J. W. Higgins, W. R. Micks, and P. C. Paris

A Project AIR FORCE report
prepared for the
United States Air Force
Strategic Mobility Alternatives for the 1980s:
Vol. 1, Executive Summary

W. E. Hoehn, Jr., R. L. Perry, J. R. Gebman
with A. A. Barbour, J. H. Hayes,
J. W. Higgins, W. R. Micks, and P. C. Paris

A Project AIR FORCE report
prepared for the
United States Air Force

Declassified Not Reviewed For
Public Release
Research sponsored by the Directorate of Operational Requirements, Deputy Chief of Staff/Research and Development, Hq. USAF under Contract F49620-77-C-0023. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

Reports of The Rand Corporation do not necessarily reflect the opinions or policies of the sponsors of Rand research.
This report and its companion volumes\(^1\) document research conducted under Project AIR FORCE (formerly Project RAND) on alternative strategic mobility forces and their contribution to the deterrence of nonnuclear conflicts involving NATO. The reports draw upon earlier research at The Rand Corporation on the importance of capabilities for early, rapid reinforcement of NATO's ground forces posture; on the role of tactical airpower, prepositioning, and sea lane defense in enhancing NATO's defensive capabilities; and on cost and capability tradeoffs to achieve the desired enhancement. Previous research emphasized rapid deployment to the NATO theater of U.S. ground forces as an indispensable element of enhanced defenses and demonstrated that only strategic airlift can provide the critical element of timeliness under many likely scenarios. These reports, accordingly, focus on the analysis of options for enhancing strategic airlift capabilities to greatly increase the rate at which Army units can be moved to the European theater by air following a mobilization decision.

Earlier publications on this subject examined in some detail the constitution and classification by size and weight of Army unit equipment to be moved and evaluated the cost effectiveness of various airlift enhancement options. Early in 1975, the project leader for the study effort left Rand, during the initial drafting of a summary report. The main author of the present report became the interim project leader. In his capacity (then) as Deputy Vice President for Project RAND, he had previously reviewed preliminary research results from two studies, in other areas of the Project RAND research program, that bore on airlift issues. One study evaluated a series of possible aero-dynamic and engine modifications or retrofits to conserve aircraft fuels and reduce the annual Air Force fuel bill. Included in that evaluation were several modifications of the C-141A. The second study (undertaken at the request of the Air Force) evaluated the applicability of a Rand-conceived procurement technique—directed licensing—

\(^1\)Executive Summary, R-1941/1-AF (this volume); Analysis and Conclusions, R-1941/2-AF; and Technical Appendices, R-1941/3-AF.
the prospective purchase of a new wing for the C-5A fleet. Neither issue has been treated earlier under the strategic mobility project.

Rand management unilaterally decided to undertake an intensive two-month exploration of some implications of the C-5A rewing and the C-141A stretch decisions for the long-term strategic mobility enhancement problem. The findings of that research, which went beyond the research program outlined for the Air Staff project monitor (OPR), were briefed to a selected set of Air Staff general officers in April 1975. Those findings were in many respects at variance with the Air Staff's position of that time on a program for airlift enhancement. Further, Rand's research had used unofficial or estimated values for several parameters in the analysis, and the briefing proposed measures of merit different from those underlying earlier Air Force studies. Therefore, the Air Force Airlift Enhancement Working Group was reconvened during May and June 1975 to review the Rand research methods, provide "official" inputs, and assess the major points of agreement and disagreement between Air Force positions and Rand views. After receiving new data inputs, but while clarification and definition of several points were pending, the Air Staff asked Rand to prepare a written report.

A preliminary draft was circulated within the Air Staff at the working level in the spring of 1976; comments received were reflected in a "for-comment" draft circulated in the late summer of 1976 to major Air Force commands and organizations with responsibilities for strategic airlift. A further series of technical discussions were held during the fall of 1976, leading to these final reports.

This work has been carried out under the original project, entitled "Strategic Mobility." Of necessity, the OPR has remained the same, but that office is in no sense responsible for the directions the study has taken during the past year. The reports represent the general state of knowledge as of late 1976. As effort has been make to footnote more recent information, changes of Air Force policy or emphasis, and new schedules.

The analysis of these sections has benefited from discussion and review of preliminary drafts with representatives of the C-5A Systems
Project Office and the Aeronautical Systems Division of AFSC, as well as with Headquarters, Military Airlift Command. This should not be interpreted as suggesting endorsement by those organizations of the findings and conclusions herein.

Controversy has occasionally attended the research and interim reports of findings. Nevertheless, these reports should help the Air Force identify and assess alternative courses of action to evaluate options for enhancing strategic airlift capabilities over the next 25 years.

Recent Project RAND publications on airlift issues include:

Hayes, J. H., *Future Army Deployment Requirements (U)*, R-1673-PR, April 1975 (Confidential).

Publications on NATO reinforcement, and tradeoffs among forces in being, prepositioning, airpower, and surface transport include:

A partial listing of recent RAND research on tactical airpower contributions to the defense of NATO includes:

CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>Ground Rules and Assumptions</td>
<td>3</td>
</tr>
<tr>
<td>Enhancement Options</td>
<td>5</td>
</tr>
<tr>
<td>Are Closure Rates Adequate?</td>
<td>8</td>
</tr>
<tr>
<td>More Rapid Deployment by Air</td>
<td>10</td>
</tr>
<tr>
<td>Options, Strategies, and Hard Choices</td>
<td>17</td>
</tr>
<tr>
<td>The Incremental Decision Strategy</td>
<td>17</td>
</tr>
<tr>
<td>Future Considerations and Further Analyses</td>
<td>20</td>
</tr>
<tr>
<td>The Fundamental Issue for Strategic Mobility</td>
<td>22</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

This report addresses an interconnected set of issues affecting strategic mobility: the capacity of the United States to move substantial combat ready forces quickly to distant parts of the world in time of crisis. Although a great many demanding scenarios have been and can be constructed that strain that capacity in various ways, the timely reinforcement of NATO by Army and Air Force combat units is generally considered to be a baseline requirement. If it can be satisfied, it will provide a capability adequate to serve most other conceivable needs. For that reason, and because the NATO-reinforcement scenario has most often been used by analysts to test the effectiveness of different modes of strategic mobility, it has also been used here. It is assumed, therefore, that a capacity to insure early reinforcement of U.S. forces on the NATO Central Front in time of crisis will be critical to deterrence of an attack by the Warsaw Pact and, should deterrence fail, to NATO's ability to repel any such attack.

The vast bulk of U.S. personnel and materiel that would be called upon to support U.S. forces in Europe ordinarily remain in the Continental United States. Moving troops and support personnel presents no special problem; the passenger capacity of the U.S. civil airline fleet is sufficient to ensure that people, their personal equipment, and many of their immediately needed supplies can be delivered to Europe quickly enough to satisfy mobilization plans. Materiel is quite another problem. Between 500,000 and 750,000 tons of major equipment (exclusive of "bulk," which can be accommodated in the holds of civil air transports) must either accompany the troops, be awaiting their arrival, or reach them shortly after. Without combat equipment, neither deterrent effect nor combat effectiveness survives.

Matching up reinforcement troops and equipment can conceivably be assured solely by prepositioning, solely by sealift, or solely by airlift of the essential combat and support equipment. In practice, some combination of those three modes will be used. Timeliness, however, dictates a heavy reliance on strategic airlift, which as currently composed
cannot fully satisfy the requirements likely to be levied on it. This study explores the reasons for that reliance and examines the costs and benefits of several options for enhancing the present and future capability of strategic airlift forces.

(U) A major thesis underlying all the analysis of airlift enhancement in this report is that DoD should plan to move early reinforcements entirely by air, with sealift initially supporting only the (substantial) resupply requirements of the deployed combat forces. The rationale for this view includes the secular decline in numbers and suitability of available U.S. and NATO shipping, the time-consuming nature of convoy assembly and crossing, and the anti-shipping threat to early convoys posed by Soviet forces. These factors argue for initially deploying both men and equipment by air, limiting the early sealift role to resupply. As convoys become less risky over a period of weeks to months, additional equipment can be sent by sea.

Prepositioning of equipment in the theater is one way of reducing the burden of both airlift and sealift. Much of the unit combat equipment for 2-2/3 U.S. divisions is nominally prepositioned\(^1\) in NATO, but there are serious shortages of critical items. Prepositioning has its limits: It is inflexible; buying duplicate division sets, one for U.S. training and use and one for prepositioning, is expensive; concentrations of equipment in storage may be subject to preemptive attack; for some items, airlift (by suitably modified jets in the U.S. Civil Reserve Airlift Fleet—CRAF) is a more cost-effective deployment technique than prepositioning; and the effectiveness of prepositioning in the past has been degraded by storage and maintainability difficulties and the extensive work required to break out the prepositioned equipment and make it ready. Nevertheless, some additional prepositioning is likely in the long term, although its scope remains uncertain.

(U) Future airlift requirements planning must include the premise that early reliable sealift and additional large-scale prepositioning may not be feasible. Should that premise be in error, the consequence

\(^1\) But much of the divisional support equipment, which includes such indispensable combat elements as tank companies and non-divisional artillery, is not.
would be the enhancement of strategic mobility and the prospect of more rapid deployment. But airlift forces sized only to support sealift could be inadequate to NATO needs if sealift were not reliably available. A similar shortfall could occur if the capacity of the airlift force were to be tailored to augment prepositioning plans that had not been fully carried out.

In terms of transportability by air, Army equipment can be categorized as bulk (707 class), oversize (C-141A class), or outsized (C-5A class). Each type of Army division (armored, mechanized, infantry, etc.) has its own special mix of equipment; thus, a different mix of C-5As, C-141As, and civil aircraft is needed to minimize deployment times for each division type, subject to Army constraints (called unit integrity) on the order in which unit equipment is moved. An airlift force planned as an adjunct to sealift will emphasize oversize capability. Sealift can carry outsized as readily as oversize, and the aircraft capable of carrying oversize are cheaper and more widely available than those that can handle outsized. But if sealift were unavailable, that airlift force would have insufficient oversize capacity, and either unit integrity could not be maintained or much of the oversize capacity would become redundant. Deployment times would suffer in either case. No "excess" of oversize can occur because oversize-capable aircraft can, by definition, carry oversize equipment, insuring unit integrity.

GROUND RULES AND ASSUMPTIONS

A number of study assumptions and ground rules are reviewed that are used in the analysis of deployment rates. They include:

- The Army to be moved entirely by air consists of eight Army division equivalent maneuver units, including initial support increments (ISI) for the divisions.

1 E.g., trucks, trailers, vans, armored personnel carriers, jeeps.
2 E.g., medium and heavy tanks, self-propelled artillery, some helicopters, combat engineer equipment, and large trucks and semi-trailers.
3 This does not include the 2-2/3 divisions whose combat equipment (but not ISI equipment) is largely prepositioned; existing
The equipment to be moved is a Rand-developed projection of elements of the 16-division " Abrams Army" as planned for FY 1982.

In addition to the Army equipment, equipment to support 54 Tac Air squadrons scheduled for deployment to NATO must be moved by air.

No additional prepositioning is assumed except as noted in special excursions. Were the capability of the current organic lift forces and the Air Force Prepositioned Reserve (AFPR) to move all of the division equivalents plus ISAs (plus Tac Air equipment) from Europe to the United States in 45 days, this would give a division about 15 days to move to the division a week; 1 war-gaming combat outcomes and military judgments suggest this is more nearly a minimum than a maximum requirement. Therefore, a method is developed for evaluating closure rates for the shortfalls in prepositioned equipment are scheduled to be eliminated by FY 1972.

1 The criteria is loosely defined, since divisions differ markedly in both total weight and percentage of outsize equipment.
aircraft (ATCA, modified 747 or DC-10 aircraft) at a cost of $3.1 billion. They would operate chiefly as tankers but optionally as transports with a limited oversize cargo capability. Another $1.3 billion program has been used for wing rebuilding to extend the service life of the C-5A. Although, strictly defined, that is not an airlift enhancement measure, it is generally considered to be an element of the composite program and will, in all, cost more than $6 billion.

(U) Table S-1 presents values of the measure of merit for the three basic enhancement options (the Air Force's requested program, except for increased C-5A utilization rates), each considered individually as an add-on to the base capability and then summed to show their collective effect.

The effective C-141A options does not generate enough capacity to meet the increased airlift need. In this case, the enhancement would be C-13 (rather than 32) C-141s. These are required to maintain unit incacity. Similarly, although our display for the C-5A enhanced variant mode would add additional, redundant, oversize capacity. Should the chosen ATCA be a

<table>
<thead>
<tr>
<th>Case Description</th>
<th>Closure Days</th>
<th>Decrease (Δ)</th>
<th>Cost ($ million/Δ day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case: organic</td>
<td>121</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>force</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add C-141 stretch</td>
<td>107</td>
<td>14</td>
<td>550</td>
</tr>
<tr>
<td>(or)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add increased UTE rate</td>
<td>107</td>
<td>14</td>
<td>780</td>
</tr>
<tr>
<td>on C-141A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add all three options</td>
<td>93</td>
<td>28</td>
<td>1,755a</td>
</tr>
<tr>
<td>(13 CRAF required)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aOnly 1/2 of CRAF program costs included because of limited numbers required.

Several points are clarified by the table. First, deployment of the FY 1982 Army is heavily outsize-constrained; only 38
oversize-capable Craf mods\(^1\) need to be added to the existing C-141As (oversize) to balance the outsize capacity of the C-5As, which thereafter constrains the time of deployment to a minimum of 93 days. Using more than 38 Craf would not contribute to more rapid deployment, given Army unit integrity constraints; at best they would provide additional capacity to move the Air Force equipment somewhat more rapidly, enhance resupply capacity, or provide more flexibility to airlift schedulers.

Second, of the several oversize enhancements available, Craf mods are clearly the cost-effective choice. They produce more rapid closure than either C-141A enhancement option, and they do so more cheaply by a factor of 3 to 4. Third, the last line of the table shows that exercising the less cost-effective C-141A options does not promote more rapid closure, it merely results in the displacement of Craf mods. If the C-141A enhancements are undertaken, only 13 (rather than 38) Craf mods are required to maintain unit integrity. Finally, although not displayed in the table, an ATCA used in a cargo-carrying mode would add additional, redundant, oversize capacity. Should the chosen ATCA be a 747 (rather than a DC-10), its capability would essentially equate to that of the Craf mods, so that the 41-UE planned ATCA b the cargo mode, would itself provide more than enough oversize capacity to balance available outsize capacity. Given its estimated costs, the acquisition of ATCA as an oversize cargo carrier would be less cost-effective than any of the other options.

Table S-2 displays the outcome for two cases in which it is assumed that the UTE rate increase has been effective for the C-5A (the only planned outsize capacity augmentation), increasing capacity by some 25 percent. Closure of the force is now more rapid than for any of the cases in Table S-1 because outsize equipment is always the constraining factor. The Craf mods program alone can still provide all the needed oversize to balance the enhanced outsize lift and still represent the cost-effective solution, again by a substantial margin. The net effect of buying 110 Craf mods, the C-141A stretch and UTE rate

\(^1\)(U) Notional Craf mods containing both the "mini-mod" nose door and the "full-mod" strengthened floor are assumed. In this report, they are called "maxi-mods."
increase, and a cargo-mode ATCA would be to create a grossly redundant
oversize capability for deployments by air, given the limited capacity
of the present C-5A force even with the UTE-rate increment.

Table S-2
CONTRIBUTION OF ENHANCEMENTS INCLUDING INCREASED
C-5A UTE RATE TO DEPLOYMENT OF FY 1982 ARMY (U)

<table>
<thead>
<tr>
<th>Case Description</th>
<th>Closure Days</th>
<th>Closure Decrease (Δ)</th>
<th>Cost (Δ million)</th>
<th>Cost (Δ million/\Delta day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 UE C-5A with Δ UTE; 234 UE C-141 with stretch and Δ UTE; CRAFT (33 required)</td>
<td>72</td>
<td>49</td>
<td>2,225a</td>
<td>45.4</td>
</tr>
<tr>
<td>70 UE C-5A with Δ UTE; 234 UE C-141A; CRAFT (60 required)</td>
<td>72</td>
<td>49</td>
<td>1,320b</td>
<td>26.9</td>
</tr>
</tbody>
</table>

aIncludes 1/2 of CRAFT program (42 aircraft) costs.

bIncludes full CRAFT program (85 aircraft) costs.

ARE CLOSURE RATES ADEQUATE?

None of the combinations of options thus far considered can
close the eight division force at a rate anywhere near a division a
week. Moreover, since the 1982 Army modeled here is a not unreasonable
representation of those forces to be stationed in the United States
(without prepositioned equipment in theater) and designed for early
reinforcement of NATO's fighting strength, it is likely that the desired
closure time for those forces would be within 30 days of the outbreak
of hostilities (D+30, in military terminology). Conventional scenarios
assume that actual conflict will be preceded by a period of warning and
mobilization and that U.S. and NATO mobilization will begin about a week
after mobilization by Warsaw Pact forces begins. However, if the 93 (or
72) day minimum closure times shown in the preceding tables are taken
at face value, closure by D+30 would imply that 63 (or 42) days will
be available for U.S. mobilization in advance of hostilities. The arithmetic thus implies that Pact mobilization will continue for seven to ten weeks before an attack. These implied scenarios are somewhat less than credible; mobilization as extensive as that would indicate massive Warsaw Pact buildup, including substantial reinforcement from the Western Military District of the Soviet Union. In that case, U.S. mobilization and reinforcement aims would no doubt be much larger than the eight divisions analyzed here. Moreover, such long periods of mobilization would provide reasonably adequate time for sealift to be organized and functioning, so that neither the size nor the mix of airlift capabilities need be of great concern.

Closure times for the 1982 Army--without reliance on sealift--can be decreased only through some combination of stationing more forces in NATO, prepositioning more unit equipment, and adding airlift capacity (especially outsize capacity). Increasing the number of U.S. units in Europe runs against the grain of many current trends: Mutual Balanced Force Reduction talks aimed at reducing stationed forces, the costs and foreign exchange drain of stationed forces, and the current Congressional and general public attitudes (to mention only three). Additional prepositioning of complete combat unit equipment sets in quantities greater than are currently programmed for the 1982 Army is probably infeasible before 1982. There are significant shortfalls of major combat items of equipment in the present prepositioned stocks and, in the interim, realization of the "1982 Army" by 1982 implies the production of divisional equipment to outfit the three new Abrams Army divisions, to upgrade two divisions from infantry to mechanized status, and to preposition the full unit equipment for one more mechanized division--in addition to making up the current shortfalls of prepositioned stocks.

The production task is so large that it may not be possible even as planned. An earlier phase of this study indicated that replenishing currently prepositioned equipment from stocks in this country would completely occupy the present airlift force for some 30–40 days. Closure times for the Army would be correspondingly lengthened if such shortfalls still existed in 1982.

A further problem for reduced deployment times is in 1982
the Air Force plans to begin the serial modification of C-5As to correct the wing fatigue problem. At any time from 1982 through 1986, 12 C-5A aircraft will be in modification, which implies a maximum available UE of 58 C-5As. If the planned 25 percent increase in C-5A capacity provided by an increased UTE rate affects only the then-available C-5As, the aggregate capability will be about that of 70 UE C-5As operating without the increased UTE rate. At least for the 1983-86 time period, deployment of the 1982 Army by air is more likely to require 93 than 72 days, if prepositioning shortages are eliminated.

MORE RAPID DEPLOYMENT BY AIR

(U) There is increasing concern about a class of NATO-Warsaw Pact confrontations involving short mobilization times and initial conflict using largely in-place forces. "Sudden attack" and "short warning attack" are two widely used generic descriptors of this scenario. "Short warning" attack cases obviously impose stringent requirements on deployment rates and strategic airlift capabilities. For such cases, the prompt availability of substantial sealift is doubtful, whatever sealift is immediately available would hardly be able to make a successful transit before hostilities begin, and few convoys are likely to arrive during the first 30 days after fighting begins. Clearly, this scenario puts a premium on capabilities for rapid, balanced deployment by air.

(U) Only a substantial augmentation of airlift capabilities, both outsize and oversize, can offer the prospect of meeting the stringent closure requirements inherent in "short warning" scenarios. Table S-3 summarizes the outcomes for forces containing nominally twice the current outsize capacity plus substantial CRAF modification programs, in conjunction with the current C-141A force.

The various airlift forces identified in the table could in principle close the eight division force by D+30, given mobilization times no longer than 11-21 days prior to the outbreak of hostilities. In addition, given only 3-10 days of mobilization, by D+30 they can close all but the last two divisions (an airmobile and an airborne division) and their two collocated reserve brigades. Since those units
are less suited than others to deal with heavily armored Warsaw Pact forces, this slippage of closure may be tolerable. In any event, initial dependence on sealift would be significantly lessened.

(U) The more rapid closure times require a large number of C-5A mods; thus far U.S. airlines have offered only 85 of their 747s; the original program objective was to enroll 100. Acquiring as many as 115 C-5A mods would probably require participation in the modification program by our NATO allies, whose civil air fleets include more than enough 747s to make up the difference. Alternatively, if the ATCA is procured in its currently envisioned oversize-only configuration, some part of the deficit could be made up by using it in the cargo rather than the tanker mode.

(U) In the near term, the only way to obtain additional oversize capacity equivalent to 70 more C-5A mods is to purchase some major modification derivative of the 747 or the C-5. Either represents a one-for-one C-5 equivalent. If the oversize-capable derivative also had a refueling capability, the tanker part of the ATCA role could be

1(U) All assumed in the analysis to be Boeing 747 maxi-mods; there are currently about 15 747s in service with U.S. airlines that are freighter or cargo-capable modifications.

2(U) The Air Force has estimated the cost of an oversize-capacity ATCA at $65 million apiece (in then-year dollars).
and their costs. The service life limit for the C-5A aircraft is set by the Air Force at 8,000 fatigue equivalent flight hours (based on 1974 aircraft configuration and 1973 operational use). As of 1976, the fleet average accumulation was about 4,000 hours, or nearly halfway to the limit in only about five calendar years of operation. The original design goal was 30,000 flight hours of more severe operational use than that of 1973, which reflected some limits on current operations to conserve remaining life. The structural deficiencies of the wing led to the development of the original Option H plan (requiring the replacement of the lower surface panels in some of the wing boxes), which was approved by the Secretary of the Air Force in 1973. Option H has since evolved to include the full replacement of all of the wing boxes, an expedient intended to ensure that the wing would be capable of sustaining 30,000 flying hours in severe use. The 1973 Middle East war, the subsequent oil embargo, and the eventual quadrupling of the price of aviation fuel brought on reductions in peacetime use of all Air Force aircraft, especially of large aircraft. Although the original plan for the C-5A envisioned flying each aircraft about 1,800 hours per year on the average (the 30,000-hour design life corresponds to about 17 calendar years of service), MAC's current peacetime operating plans envision about 700 hours per year on the average\(^1\) to maintain 4.0 flight crews per UE. Thus, if Option H restores no more than 22,000 additional flying hours (to bring total use to 30,000 hours), MAC's planned UTE rate implies retention of the C-5A in the active inventory at least until the decade 2010-2020 (assuming no extra utilization for contingencies). If, as expected based on current use, the wing will provide more than 30,000 equivalent additional hours, the notional retention date would be further extended.\(^2\) Such a long period of use might be reasonable if the C-5A were economical to operate and maintain and not

\(^{1}\)After the wing modification, MAC expects an average UTE rate of 2.13 hr/day (360 day year) for each of the 70 UE aircraft. This is equivalent to 697 hr/yr/aerfcraft based on all 77 aircraft.

\(^{2}\)However, at some point, a high-cost modification/maintenance program would presumably be required to control corrosion and fatigue in other structural areas.
subject to technological obsolescence. If that is not the case, the Air Force could usefully review the 1973 decision that a service life of 30,000 hours should remain the design goal for fixes to the C-5A wing. Option H represents a high-confidence but expensive way to meet this design goal. Lesser options involving more modest structural modifications and extending present constraints on operational use conceivably could extend the service life of the C-5A through the balance of this century for significantly less than Option H will cost, and could avoid the critical reduction of outsize capacity during 1983-86.

Assessments of airframe fatigue problems of the C-5A and other Air Force aircraft are currently being performed using crack growth calculations based on the scientific theories of fracture mechanics. Until recently, service use limitations had been established by the wholly empirical correlations that underlie the classical fatigue methods. The advantage of the fracture mechanics approach is that, in addition to estimates of time to failure, it provides a rational theoretical basis for the assessment of the critical crack length at which an element will fail. Both approaches rely on test data to assess the validity of the assumptions and procedures that are followed in any given application. However, it is agreed that the calculated 8000-hour safe service life is as yet subject to considerable uncertainty and that empirical evidence accumulated to date is insufficient to confirm or refute the precision of that calculation.¹ Nor are data available to support confident estimates of the benefits and costs of lesser modifications.

Increases of several thousand hours in the service limit can extend the average service life of the C-5A force at least into the 1990s. The effects of various service life extensions are shown in Fig. S.1, which relates utilization rates and peacetime operational limitations of differing stringencies to the calendar time to which the forcewide average service life could be extended (without further

¹One question about the forthcoming fatigue problems with the current C-5A wing is whether it is possible to wait for the appearance of cracks in service aircraft (e.g., reinstitute higher UTE rates for the lead-the-force aircraft) before making the final commitment to modification.
Fig. 5.1 — Sensitivity of calendar year service to mission use, service limit, ALDCS life extension effectiveness (shaded area) and annual utilization.
modification). Because the C-5A could become technically or economically obsolete by the turn of the century, an immediate effort is warranted to determine how it might be made to last that long without the expense of Option H modifications. Technical activities and empirical testing to that end can and should be undertaken over the next year or two. The results would permit more confident assessment of service life limits and lesser cost modification alternatives. Promising initiatives encompass (1) resolution of the effectiveness of the active lift distribution control system (ALDCS) in reducing stress at critical locations, (2) tests to determine the initial flaw distributions, (3) reassessment of the onset of general area cracking and verification of the operational stress experience, (4) adjacent panel residual strength tests, and (5) evaluation of the need for additional full-scale fatigue testing. A desirable first step is the formation of a new high-level review group to develop detailed test plans, evaluate new information, and provide alternative sources of action to top-level Air Force decisionmakers.

Two alternatives—no modification and Option H—represent the end points of a spectrum of service life management actions for the C-5A. If some greater life extension were required than might be obtained through austere use of the remaining service life in the current C-5A force, or if an extended period of such austere use were deemed infeasible, at least two other options might provide lesser service life extensions than Option H but at much lower cost. A modest fastener change program might provide several thousand more hours at one-fourth to one-fifth the cost of Option H (if disassembly of the wing boxes can be avoided), and a rework of the current configuration of the wing could more than double the present service life estimate at a cost lower than that of Option H. Both modifications would extend service life into the next century, even with 1973 operational use and an increased UTE rate, with a margin for contingency or wartime use. Evaluation of the fastener change option is urgent; to be effective it may have to be undertaken before the 8000-hour point occurs.
OPTIONS, STRATEGIES, AND HARD CHOICES

The Air Force's current programs are compared with a sequential decisionmaking strategy designed to minimize the cost of moving to a future balanced capability. The most serious problems with the current enhancement program are:

1. The major commitment to oversize capacity expansion of airlift forces will leave deployment capabilities strongly dependent on the timely availability of reliable sealift for the foreseeable future; in a design competition, possibly including prototyping, to demonstrate the feasibility and technical
 A severe future shortfall of outsize capacity will develop, relative to available oversize, under any scenario that requires rapid deployment of ground forces entirely by air;
2. The earliest expenditures are invested in the least cost-effective oversize enhancement options—the C-141A stretch and increased UTE rate;
3. The prospective near-term expenditure of some $6 billion for the C-141A stretch, the UTE rate increase, CRAFT mods, ATCA, and the C-5A Option H may limit or foreclose additional funding to acquire the needed outsize capacity increase;
4. A commitment to Option H for either part or all of the C-5A force may not be necessary if additional test and analysis confirm that:
 1. The C-5A's service life can be made to extend to the 1990s at minimal cost, or
 2. Other, lower-cost options could lead to further extension if necessary.

THE INCREMENTAL DECISION STRATEGY

The objectives of an incremental approach are to trade time for money, proceeding only with clearly indispensable programs, to use some of the withheld money to resolve crucial uncertainties, and to commit additional funds later to those programs that then appear most likely to provide enduring airlift enhancement.

There are few clearly indispensable programs at this point:

1. A CRAFT modification program, with renewed emphasis on the maxi-mod;
Table S-4
COST COMPARISONS OF AIR FORCE AND INCREMENTAL STRATEGIES

<table>
<thead>
<tr>
<th>Program Description</th>
<th>Costs, $ Millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Requested Programs</td>
<td></td>
</tr>
<tr>
<td>C-141 stretch</td>
<td>550</td>
</tr>
<tr>
<td>C-141 increased UTE rate</td>
<td>780</td>
</tr>
<tr>
<td>C-5A increased UTE rate</td>
<td>470</td>
</tr>
<tr>
<td>Option H kit production and installation (41 UE)</td>
<td>1,126</td>
</tr>
<tr>
<td>ATCA (91 UE)</td>
<td>5,900</td>
</tr>
<tr>
<td>Total:</td>
<td>6,026</td>
</tr>
</tbody>
</table>

Illustrative Incremental Strategy

<table>
<thead>
<tr>
<th>Program Description</th>
<th>Costs, $ Millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-5A testing and option enhancement</td>
<td>85</td>
</tr>
<tr>
<td>Spares to support 10/8 UTE</td>
<td>100</td>
</tr>
<tr>
<td>Prototype outsize ATCA derivatives</td>
<td>500</td>
</tr>
<tr>
<td>Acquisition 80 outsize ATCA ($65 million per aircraft)</td>
<td>5,200</td>
</tr>
<tr>
<td>Possible C-5A repairs (no mod)</td>
<td>0 (fastener change)</td>
</tr>
<tr>
<td></td>
<td>300 (Option H)</td>
</tr>
<tr>
<td>Total:</td>
<td>5,985</td>
</tr>
</tbody>
</table>

In the interim, information enhancements to be undertaken in the interim. Proceeding with Air Force programs first and then embarking on a program to restore balanced airlift capabilities (by acquiring double the present outsize capacity) could nearly double the costs of either strategy.

In the NATO scenario, the principal role of the outsize ATCA would be to carry outsize equipment, not to refuel other airlifters. An outsize ATCA refueling a C-5A would produce some modest increase in C-5A utilization and in payload carried (preliminary calculations by the Air Force suggest an 8 to 24 percent improvement), but an outsize ATCA carrying outsize equipment accompanied by an unfueled C-5A produces some two C-5 equivalents. The tanker capability of the ATCA is certain
to have a high value for non-NATO contingencies that involve deployments of extended ranges with few (or no) enroute bases.

FUTURE CONSIDERATIONS AND FURTHER ANALYSES

Although uncertainties about the remaining life of the C-5A are of major importance in planning future airlift enhancements, they are by no means the only critical uncertainties that must be resolved. Other important points that could influence decisions about long-term airlift enhancement include:

- Obtaining clearer OSD guidance on the primacy of airlift for early NATO reinforcement, on desired airlift capabilities, and on closure rates;
- Evaluating the feasibility of an outsize version of ATCA and the interrelationships of tanker and airlift requirements in the post-1980 period;
- Operation of the prototype to discover the effect of theC-5A on other aircraft;
- Conducting detailed feasibility studies of potential capabilities, costs, and availabilities of both new and derivative outsize aircraft;
- Undertaking more refined airlift enhancement studies over an extended time horizon, using appropriate assumptions about escalation and discounting, and comparing "balanced" capabilities over time;
- Exploring with the Army ways to reduce both outsize and oversize equipment lists, thus moderating NATO contingency airlift requirements;
- Evaluating with the Army the feasibility of partial prepositioning—prepositioning high-weight but low-cost items—duplicating only less-expensive items but reducing the initial demands on airlift.

Several issues that can influence CRAFT mod program decisions could be resolved in the next two years or so:

- Completion of the prototype mods and tests of their compatibility in loading Army oversize items to better understand loading, unloading, and handling problems;
equipment, but oversize-capable aircraft cannot transport an excess of outsize equipment.

THE FUNDAMENTAL ISSUE FOR STRATEGIC MOBILITY DECISIONMAKING

The above array of unanswered technical and operational questions is impressive; but for most, their resolution would only refine program decisions. The issue for policymakers is: Should the United States reduce the long-term critical dependence on sealift to deploy the Army, or should efforts be concentrated on making larger amounts of more capable sealift available much earlier than at present?

Current defense guidance and proposed programs do not address this issue; rather, they are a patchwork of improvements at the margin in both sealift and airlift. Moreover, the lack of policy focus leads to a lack of funding authorizations adequate to carry out either approach effectively. An emphasis on sealift would require many more vessels, better suited to rapid loading and transport of Army cargo, on immediate standby availability; more robust defense of both convoys and ports would also have to be provided. Airlift enhancements would be of low priority, given more reliable and timely sealift in quantity. Alternatively, a policy emphasis on airlift would require somewhat more oversize, for which redundant programs are proposed, and a lot more outsize capacity, for which no efforts are under way. Sealift would require little augmentation effort, since it is adequate to handle resupply tasks and contribute to later stages of extensive deployments.

Given that much of the problem of conventional defense of NATO is attributable to insufficient prior investment in combat equipment, the need for rapid and timely reinforcement is not likely to vanish, and the costs of stiffening NATO defenses will be substantial. It is doubtful that, in addition to those expenditures, the United States can afford to pursue adequate and timely reinforcement capabilities both by air and by sea. That course runs the risk of achieving only partial success in both areas, the sum of which would not enhance our confidence in our ability to conduct timely reinforcement.

The direction of the Air Force's current program implies a decision to rely on sealift. Oversize enhancements alone do little to
reduce the current critical U.S. dependence on timely availability of sealift. At the logical extreme, even if all of the Army's oversize equipment could be deployed by air, the Army's oversize equipment—much of which constitutes the heavy firepower of maneuver units—could only be deployed slowly, at first limited by the available oversize airlift, and in larger quantities only after several weeks have elapsed, as sealift begins to arrive. But is "several weeks" timely enough?

No compelling case can be made for exercising all the oversize enhancement options while reserving judgment on how much and what kind of oversize aircraft to acquire when. The CRAF mod program alone provides more than sufficient oversize capacity to balance the available C-5A lift. More oversize than that simply runs up the ultimate airlift enhancement bill without mitigating all-airlift deployment problems, even in the short run.

A prompt start on oversize aircraft augmentation can set in motion the development of a future deployment capability that at least can significantly reduce the dependence on sealift for deployment of Army equipment and may substantially increase the rate of deployment of combat units in the critical early weeks of an unfolding crisis. If the objective is to reduce U.S. dependence on the timeliness of sealift, a lot more oversize airlift capacity is needed, even though the total increment cannot yet be defined precisely. Before making the current program decisions, the Department of Defense should decide whether to continue reliance on sealift or to begin an oversize aircraft augmentation.