Assessing Container Security
A Framework for Measuring Performance of the Global Supply Chain

The global container supply chain moves cargo rapidly across seas and into ports throughout the world. A well-planned terrorist attack taking advantage of this system could occur anywhere, at any time. The significance of such an attack would be measured in terms of significant loss of life and billions of dollars of economic damages.

Traditionally, supply-chain security has focused on reducing shrinkage—the loss of cargo shipments through theft and misrouting. However, after 9/11, security has been redefined to include protection from terrorist attack. The response has been a proliferation of new security measures. But some fundamental questions remain: For all these efforts, is the system more or less secure? Will we know if these efforts are successful? How will success or failure be measured?

This RAND Corporation monograph presents a framework for addressing these questions by looking at the effects terrorist attacks might have and how the security measures themselves affect system performance.

Abstract
Since 9/11, several programs have been implemented to improve security of the global supply chain. In reviewing these programs, this study concludes that supply-chain efficiency and security are distinct but interconnected and recommends considering all aspects of supply-chain performance when assessing security measures. Also, programs to improve supply-chain security have focused largely on preventing and deterring terrorist attacks, with little focus on improving the supply chain’s fault tolerance or resilience.

What Does the Supply Chain Look Like?
The structure of the container shipping system would seem self-evident: It is a network of vessels, port facilities, rail cars, trucks, and containers that transport goods in discrete units around the earth.

But that view pertains only to the physical components of a system that includes the cargo, information, and financial flows required for it to operate.

In fact, the supply chain can be viewed as three interdependent and interacting networks or layers, as shown in the figure: a physical logistics system, a transaction-based system that procures and distributes goods and that is driven...
The interconnected nature of supply-chain capabilities suggests that security measures that reduce efficiency could have unintended negative consequences because stakeholders will look for ways to compensate for or circumvent the security requirements.

Second, initiatives to improve security have focused largely on preventing and deterring smuggling and terrorist attacks, with little focus on improving supply-chain fault tolerance or resilience.

Our analysis shows that few security enhancement programs seek to ensure either fault tolerance or resilience. These capabilities are a function of both system design and the responses of participants in the oversight layer. In principle, it is in the best interests of a firm to plan for supply-chain failures. But at the logistical level, additional capacity is incredibly capital-intensive, and carrying it on a balance sheet makes little business sense.

For example, in 2002, the Ports of Los Angeles and Long Beach handled nearly three-quarters of all west-coast container traffic. This concentration is a vulnerability created by the drive for efficiency. Were both ports to close for security reasons, the other west-coast ports lack the needed infrastructure for absorbing all the traffic previously calling at Los Angeles and Long Beach. But while incentives for developing smaller ports would improve fault tolerance and resilience, they would also create redundancy and excess capacity that would reduce efficiency. Because these incentives do not exist and receive little attention from members of the transaction or logistic layers, public policy action is needed to provide the fault tolerance and resilience required.

Recommendations

These implications suggest three complementary paths for improving the supply chain’s security while maintaining its efficiency.

First, the public sector should seek to bolster fault tolerance and resilience. The motivation of the private sector to allocate resources to such efforts is subject to the market failures of providing public goods. Also, the government will be responsible for assessing security and for decisions to close ports.

Second, security efforts should address vulnerabilities along supply-chain network trade lanes. Efforts to improve security continue to focus on ports and facilities. But while the route over which cargo travels is vast and difficult to secure, doing so is essential to a comprehensive strategy to secure the supply chain.

Finally, research and development should target new technologies for low-cost, high-volume remote sensing and scanning. Current sensor technologies that detect weapons or illegal shipments are expensive and typically impose significant logistic system delays. New detection technologies for remote scanning of explosives and radiation would provide valuable capabilities to improve supply-chain security without diminishing efficiency.

This research brief describes work done for RAND Infrastructure, Safety, and Environment and documented in Evaluating the Security of the Global Containerized Supply Chain, by Henry H. Willis and David S. Ortiz, TR-214-RC (available at http://www.rand.org/publications/TR/TR214), 2004, 46 pp., $18.00, ISBN: 0-8330-3715-3. TR-214-RC is also available from RAND Distribution Services (phone: 310.451.7002; toll free 877.584.8642; or email: order@rand.org). The RAND Corporation is a nonprofit research organization providing objective analysis and effective solutions that address the challenges facing the public and private sectors around the world. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. RAND® is a registered trademark.