Positioning War Reserve Materiel Requires a Flexible, Global Approach

The U.S. Air Force’s Air and Space Expeditionary Forces (AEF) must be able to rapidly deploy and begin operations anywhere in the world. An important factor in meeting this goal is the ability to store war reserve materiel (WRM) at forward support locations (FSLs) outside the United States and then quickly transport this materiel to where it is needed. WRM includes combat support resources such as base operating equipment, vehicles, and munitions.

RAND Project AIR FORCE (PAF) evaluated strategies for positioning WRM so that it can support a variety of future combat operations at minimal cost (considering construction, storage, and transportation) and maximum speed. PAF’s findings and recommendations follow.

A mobility plan should include a combination of airlift, sealift, and land transportation. Using trucks and high-speed sealift may be faster and less expensive than airlift for deployment to some regions. This places an emphasis on storage sites that allow for multimodal transport of WRM assets.

Certain areas of the world should be considered as possible locations for new combat support bases.

■ The potential for continued conflicts in Central Asia and the Near East has made Eastern European and Mediterranean countries such as Romania, Bulgaria, Greece, and Cyprus attractive as potential storage locations for WRM. The region offers multimodal transport options.

■ Given Africa’s increasing strategic importance, new FSLs may be needed to provide more rapid support for operations in this area. While construction costs for new bases would be incurred, they could be offset by reductions in transportation costs via the use of storage sites in the region.

■ A closer examination of Southeast Asian countries, including Thailand, Singapore, and the Philippines, is warranted. Each of these sites offers storage space, adequate runway facilities, proximity to ports, and strategic location.

Access concerns must be addressed in any decision on potential overseas basing locations. Although sea-based prepositioning is more costly than land-based storage and may require more deployment time, the afloat option should not be discounted because it offers flexibility in the event that host countries deny access. Additionally, land-based sites that offer access and stability may be desirable despite their locations or higher transportation costs.

A global approach is more effective and efficient than allocating resources on a regional basis.