Australia’s Domestic Submarine Design Capabilities

Options for the Future Submarine

In the mid-2020s, the Royal Australian Navy (RAN) will retire the HMAS Collins, the oldest of Australia’s Collins-class submarines, when it reaches the end of its 30-year service life. Over the course of the following decade, the other five submarines that constitute the Collins class also could face retirement when their respective service lives terminate.

Australia intends to acquire 12 new submarines to replace the Collins-class vessels. This replacement submarine—known as the Future Submarine—will be designed to travel farther, stay on patrol longer, support more missions, and provide more capabilities than the Collins vessels.

Acquiring these new submarines will be the largest and most complex defence procurement in Australia’s history, and the Australian Government is considering having the vessels designed domestically and built in South Australia. However, because Australia has never designed a submarine, the Australian Department of Defence (AUS DoD) sought outside help to assess the domestic engineering and design skills that industry and Government will need to design the vessels, the skills that they currently possess, and ways to fill any gaps between the two. In November 2009, the AUS DoD engaged RAND to conduct such an evaluation of Australia’s capabilities and capacities to design conventional submarines.

Australia’s Submarine Design Skills Gap

RAND assembled a team that included a former commanding officer of a RAN submarine to conduct the evaluation. After reviewing the current literature on submarine design and engineering, analyzing historical design workload data from the United Kingdom’s (UK’s) Upholder programme and the Collins programme, and surveying industry and Government representatives on current and expected design practices, the team estimated that designing a conventional submarine today would require an effort of 8 to 12 million man-hours (MMH) over 15 years from a workforce of fully proficient, experienced submarine design personnel. This translates into a labour pool that, at its peak, would involve 600–900 submarine-proficient draftsmen and engineers in industry plus 80–175 oversight personnel in Government.

The RAND team found that while Government employs enough oversight personnel to meet its peak demand in most skill areas (although the availability of some may be in question insofar as they are involved with other naval and commercial programmes), such is not the case for Australian industry. As the accompanying table

Abstract

Australia will need a domestic workforce of roughly 1,000 skilled draftsmen and engineers in industry and Government to create and oversee the design of a new, conventionally powered submarine for the Royal Australian Navy. Such a workforce does not exist in Australia today, but one could be cultivated over the next 15 to 20 years under the right circumstances. By collaborating with foreign design partners rather than relying exclusively on a domestic design workforce, Australia could shorten the duration and lessen the costs of designing a new submarine.
shows, companies in Australia today do not employ as many experienced submarine draftsmen and engineers with certain skills as they would need to meet expected peak demands at the 8 MMH and 12 MMH levels.

How would the programme fare if Australia were to draw solely from this current industry pool of domestic draftsmen and engineers to design the Future Submarine? As the table shows, that pool totals 475 draftsmen and engineers, many of whom may be engaged in supporting the Collins-class or other naval programmes and thus unavailable for a new submarine design team. It is entirely possible that as few as 20 percent of today’s workforce might be available to work on the new submarine.

To explore this issue, RAND constructed a simulation model to gauge how different numbers of draftsmen and engineers with various levels of proficiency would affect a 15-year design effort involving 8 MMH. The model found that if Australia were to assemble a design workforce numbering 20 percent of today’s submarine-experienced labour pool (equal to some 100 draftsmen and engineers), the effort to design the Future Submarine would take an additional four years to complete (19 years versus 15 years) and involve 20 percent more man-hours. If the assembled design workforce numbered 40 percent of today’s labour pool (equal to some 200 personnel), the design effort would require an additional three years and 15 percent more man-hours.

Industry and Government Options for Closing the Gap

RAND’s simulations suggest that Australia can avoid cost and schedule delays only by augmenting its current design workforce with 250–500 submarine-experienced personnel. The RAND team evaluated two basic options that industry could pursue to cultivate such submarine design expertise and an array of options that Government could adopt to close gaps in its engineering workforce. The team’s analysis pointed out pros and cons in the options for industry and identified one preferred option that makes the most sense for Government.

Industry Option 1: Hire and train personnel from within Australia. This would require recruiting and training draftsmen and engineers with no submarine experience. Not only would this workforce need more man-hours and a longer schedule to design the new submarine, it would need to shrink as the design programme nears completion. However, the result would be a capability to design submarines solely within Australia.

Industry Option 2: Infuse submarine-experienced personnel from abroad. Adding submarine-experienced personnel from abroad to the design workforce—by recruiting...
internationally, by having Australia-based companies draw from their international offices, or by partnering with another country’s design organization—would shorten the schedule and lessen the cost increase. The advantage of this approach would be that as the new design programme winds down, international personnel could return to their home countries. The disadvantage: New submarine design programmes in the United States and UK may preclude the availability of experienced submarine design personnel from those countries, and Australia may not be left with the total capability needed to design a new submarine.

Preferred Government Option: Draw core personnel from the Collins class to start the Future Submarine programme, then grow new personnel. This would draw a core group of technical personnel from the workforce supporting the Collins class and other maritime programmes and hire additional personnel both as replacements for that core and as a way to fill out the Future Submarine programme. This option would draw from the Collins-class experience, reduce the risk of under-resourcing the Collins class and other programmes, and likely incur reasonable costs in training.
The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis.

This electronic document was made available from www.rand.org as a public service of the RAND Corporation.

Support RAND

Browse Reports & Bookstore

Make a charitable contribution

For More Information

Visit RAND at www.rand.org

Explore the RAND National Security Research Division

View document details

Research Brief

This product is part of the RAND Corporation research brief series. RAND research briefs present policy-oriented summaries of individual published, peer-reviewed documents or of a body of published work.

Limited Electronic Distribution Rights

This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions.