SOLUTION SETS FOR GAMES ON THE SQUARE

I. Glicksberg and O. Gross

RM-901

8 August 1952

This is a working paper. It may be expanded, modified, or withdrawn at any time.
Summary: Some necessary and sufficient conditions that a pair of non-void weak closed convex sets of strategies form the solution set of a game with continuous payoff on the square are given.

SOLUTION SETS FOR GAMES ON THE SQUARE

I. Glicksberg and O. Gross

Let K denote the set of all optimal strategies for one player, L the corresponding set for his opponent in a game. We shall refer to $K \times L$, the set of all pairs (f,g), $f \in K$, $g \in L$, as the solution set of the game. Any non-void weak* closed convex set K is the set of all optimal strategies for one player in some game with continuous payoff, as was shown in [1], but of course not all pairs K,L of such sets will yield solution sets. By means of constructions similar to those used in [1] we shall determine which pairs do occur in terms of the spectra, σ_K, σ_L of these sets and the number of independent containing hyperplanes.

1. Preliminaries. As was shown in [1], any non-void weak* (w^*) closed convex set K of strategies is the intersection

\[\sigma K = \bigcup_{f \in K} \sigma(f), \]
which is easily seen to be a closed set.
of a sequence of half spaces, which we may express by

\[(1) \quad K = \{ f \mid (\varphi_n, f) = \int \varphi_n(x) df(x) \geq 0, \ n = 1, \ldots \} \]

where \(\{\varphi_n\} \) is a sequence of continuous functions and we may assume, for each \(n \), \((\varphi_n, f) = 0 \) for some \(f \) in \(K \). Certain of these \(\varphi \)'s will yield \((\varphi, f) = 0 \) for all \(f \) in \(K \), and these we shall denote by \(p \)'s. Thus we shall write

\[K = S(\varphi_n; p_n)^2 \]

to express the fact that \(K = \{ f \mid (\varphi_n, f) = 0 = (p_n, f) \} \) as well as the fact that \((\varphi_n, K) \) is a non-degenerate interval. The functions \(p_m \) thus define hyperplanes containing \(K \) while the \(\varphi_m \) do not. If the set \(K \) is the intersection of a set of hyperplanes, one may show exactly as in the proof of \((1) \) that it is the intersection of a sequence of these and one may write \(K = S(p_m) \).

What we shall be concerned with in large part in the following constructions will be the hyperplanes containing \(K \). It is immediately evident that if we select from the functions \(\{p_n\} \) a maximal subsequence \(\{p'_n\} \) which is linearly independent on \(\varphi \) \(K \) then the relations \((p_n, f) = 0 \) are consequences of the relations \((p'_n, f) = 0 \) for \(f \) for which

\[2) \quad \text{For the opponent we shall write } L = S(\varphi_m; q_n) \text{ where we take } (\varphi_m, g) \neq 0. \]
σ(ψ) ⊂ ψK. Consequently if we set \(p^*(x) = \text{dist}(x, \psi K) \),
then \((p^*, f) = 0 \), \((p'_n, f) = 0 \) all \(n \), \((p_n, f) = 0 \) all \(n \);
thus in most of what follows we shall assume the \(\{p_n\} \) to be
linearly independent\(^{3)}\) and actually orthonormal:

Suppose we define a measure on \(\psi K \) in the following
way: select a sequence \(\{x_n\} \) dense in \(\psi K \) and place weight
\(2^{-n} \) at \(x_n \). Then clearly we may apply the Gram–Schmidt process
to the \(\{p_n\} \) to obtain an orthonormal sequence \(\{p'_n\} \) of
the same length (we take \(\{x_n\} \) dense to insure that only the
function 0 has the integral of its square zero). Just as
clear is the fact that \((p'_n, f) = 0 \) for all \(n \) is equivalent
to \((p_n, f) = 0 \) for all \(n \).

2. Constructions. We shall now construct payoffs which
will have three types of solution sets. That these are the
only types which occur will be shown later.

Case I: Suppose \(\psi K = [0,1] = \psi L \) and \(K \) and \(L \) are
the intersections of the same number of independent hyper-
planes. The orthonormal sequences \(\{p_n\} \) and \(\{q_n\} \) defining \(K \)
and \(L \) are thus of the same length, and if we set
\[
M(x, y) = \sum a_n p_n(x) q_n(y),
\]

\(^{3)}\) We shall say that the hyperplanes \(H_n \) defined by
\(H_n = \{f | (p_n, f) = 0\} \) are independent hyperplanes containing \(K \)
if the \(p_n \) are linearly independent on \(\psi K \), \(K \subset H_n \).
where the a_n are chosen to insure uniform convergence of the series, then for f in K and g in L,

$$
\int Mdf = \sum a_n(p_n,f)q_n(y) = 0 = \sum a_n p_n(x)(q_n,g) = \int Mdg;
$$
on the other hand, if f is optimal

$$
\int Mdf = \sum a_n(p_n,f)q_n(y) = 0,
$$
and in view of the orthogonality of the q_n; f is in K.

Similarly every optimal g is in L, and $K \times L$ is the solution set.

Case II: Suppose $\sigma K = [0,1] \not\subset \sigma L$, and $K = S(\Phi_m; p_n)$.

$L = S(q_n)$ where there are at least as many independent hyperplanes containing K as there are containing L (thus we may assume that a maximal linearly independent set of p_n's is at least as long as the set of q_n's linearly independent on σL). Since σL is not the full unit interval we may select an open interval I which has one end point y_o in σL.

Select a disjoint sequence $\{I_n\}$ of open subintervals of I for which $\text{dist} (y_o, I_n) \to 0$, and an open subinterval I_n^* of each I_n whose closure lies entirely in I_n. Let k_n be a continuous non-negative function which vanishes outside I_n but is non-zero inside I_n, and which assumes the value 1 at a point y_n of I_n^*. Define a continuous function m_n which vanishes at y_n and outside I_n^*, but takes on the values ± 1.
If we then set \(q(y) = \text{dist}(y, \sigma L \cup \bigcup I^*_n) \), then for every \(y \) not in \(\sigma L \) one of the non-negative functions \(q, k_n \) is non-zero at \(y \).

We now define our payoff as follows: we divide the sequence \(\{p_n\} \) into \(\{p'_n\} \), orthonormal and of the same length as the \(\{q_n\} \), and \(\{p^*_n\} \). If either of the sequences \(\{p'_n\} \) or \(\{\varphi_n\} \) are finite we use repetitions to form a sequence, and if there are no \(\psi_n \)'s say, we take \(\varphi_n = 1 \) for all \(n \).

We set (for \(b_n > 0 \), chosen to insure uniform convergence)

\[
M(x,y) = \sum a_n p_n(x)q_n(y) + \sum b_n [k_n(y)\varphi_n(x) + n m_n(y)p_n^*(x)] + q(y)
\]

where \(\{N_n\} \) is an enumeration of the integers in which each integer occurs infinitely often. For \(f \) in \(K \) and \(g \) in \(L \)

\[
\int Mdf = \sum b_n k_n(y)(\varphi_n,f) + q(y) \geq 0 = \int Mdg,
\]

so that both are optimal.

Suppose \(f \) is optimal; then for \(y \) in \(\sigma L \),

\[
\sum a_n(p_n,f)q_n(y) = 0
\]

whence \((p_n,f) = 0 \), and thus

\[
0 \leq \sum b_n[k_n(y)(\varphi_n,f) + n m_n(y)(p_n^*,f)] + q(y),
\]

and at setting \(y = y_n \), \(b_n(\varphi_n,f) = 0 \), so that \((\varphi_n,f) = 0 \) for all \(n \). For \(y \) in \(I^*_n \) we have

\[
0 \leq b_n[k_n(y)(\varphi_n,f) + n m_n(y)(p_n^*,f)]
\]
whence $0 \leq (\varphi_{n_{m_{n}}}(f) + nm_{n}(y)(p_{n_{m_{n}}}(f)$, and since m_{n} assumes the values ± 1,

$$(\varphi_{n_{m_{n}}}(f) \geq \pm n(p_{n_{m_{n}}}(f),$$

hence

$$(\varphi_{n_{m_{n}}}(f) \geq n|p_{n_{m_{n}}}(f)|.$$

Since N_{n} takes on the value n_{o} infinitely often, $$(\varphi_{n_{o}}(f) \geq n|p_{n_{o}}(f)|$$ for arbitrarily large n, and $(p_{n_{o}}(f) = 0$ for each n_{o}. Thus f is in K.

If g is optimal, then for any f in K,

$$Q = \int \int Mdfdg = \sum b_{n}(k_{n},g)((\varphi_{n_{m_{n}}}(f) + (q_{n},g).$$

But each term of this sum is non-negative $((k_{n},g) \geq 0$ since $k_{n} \geq 0)$ so that surely $(q_{n},g) = 0$. If $(k_{n},g) > 0$ for some n then since there is an f in K for which $(\varphi_{n}(f) > 0$, we would have a contradiction. Thus

$$(q_{n},g) = 0, (k_{n},g) = 0, and (m_{n},g) = 0$$

since $(k_{n},g) = 0$ implies g places no weight on I_{n}. Thus $g \in \sigma L$, and since we now may write

$$0 = \sum a_{n}(q_{n},g), x \in \sigma K,$$

and $(q_{n},g) = 0$, g is in L.

Case III: \(\sigma K \neq [0,1] \neq \sigma L \). Here we may take any \(K \) and \(L \) without further restriction, so that \(K = S(\psi_m; p_n) \) and \(L = S(\psi_m; q_n) \) (if \(\psi_m \neq 0 \) here, however, in our definitions). We construct functions \(h_n \) similar to the \(k_n \) of case II, and \(l_n \) similar to the \(m_n \), on an interval abutting \(\sigma K \). We set

\[
M(x,y) = \sum a_n [h_n(x) \psi_n(y) + n l_n(x) q_n(y) + k_n(y) \psi_n(x) + m_n(y) p_n(x)].
\]

Arguments entirely similar to those used in case II show \(K \times L \) to be the solution set.

3. Generality. In case I (\(\sigma K = [0,1] = \sigma L \)) we restricted our attention to the case in which \(K \) and \(L \) were intersections of the same number of independent hyperplanes. Suppose now that a game with payoff \(M \) has as its solution set \(K \times L \) where \(\sigma K \) and \(\sigma L \) are the full intervals. \(K \) is determined as the set of all \(f \) for which

\[
\int M(x,y) df(x) = 0
\]

(for convenience we take the value to be zero), and thus is the intersection of hyperplanes given by the functions \(\{M(\cdot,y)\} \), and similarly \(L \) is the intersection of the hyperplanes determined by the functions \(\{M(x,\cdot)\} \).

If a maximal linearly independent set \(\{M(x_i,\cdot)\} \) of the first set, say, is finite, \(i = 1, \ldots, n \), then the same is true of the second, indeed there are just as many. For, as is
well known, n functions F_1, \ldots, F_n are linearly independent on a set X if and only if there exist x_1, \ldots, x_n in X for which

$$\det (F_i(x_j)) \neq 0;$$

consequently we have y_1, \ldots, y_n for which

$$(2) \quad \det (M(x_i, y_j)) \neq 0,$$

so that the functions $\left\{ M(\cdot, y_j) \right\}_{j=1, \ldots, n}$ are linearly independent. Of course if $\left\{ M(\cdot, y_j) \right\}_{j=1, \ldots, n+1}$ were linearly independent by the same argument we should have an x_{n+1} for which $\left\{ M(x_i, \cdot) \right\}_{i=1, \ldots, n+1}$ were, which contradicts our assumption, and there are exactly n. Thus the type of solution sets considered in case I are the only type which can occur. (One might note that here finite set of independent containing hyperplanes can only occur in a polynomial-like game, since for every x we have coefficients $a_1(x)$ for which

$$M(x, y) = \sum a_1(x)M(x_1, y),$$

and (2) shows the functions a_1 to be continuous.)

In case II, $(\sigma K = [0,1] \neq \sigma L)$ we considered only those K and L for which we had as many independent hyperplanes containing K as there are containing L. But if M is the payoff of a game with solution set $K \times L$, $\sigma K = [0,1] \neq \sigma L$, then as before since L is determined by

$$\int M(x, y)dg(y) = 0, \quad \text{all } x,$$
L is just the intersection of hyperplanes. If there are only \(n \) independent containing hyperplanes, then, as we shall see in a moment, these must be given by the functions
\[
\{ M(x_i, \cdot) \}_{i=1, \ldots, n}
\]
linearly independent on \(\sigma L \), for some set \(x_1, \ldots, x_n \); consequently there exist \(y_1, \ldots, y_n \) in \(\sigma L \) for which (2) holds, and
\[
\{ M(\cdot, y_j) \}_{j=1, \ldots, n}
\]
are linearly independent.

Since \(\int M(x,y)df(x) = 0 \) for \(y \) in \(\sigma L \), these functions define \(n \) independent hyperplanes containing \(K \).

To see that the \(n \) independent hyperplanes containing \(L \) arise from functions \(M(x_i, \cdot) \) we note that for each \(x_i \), \(M(x_i, \cdot) \) defines a containing hyperplane since \(x_i \) is in \(\sigma K = [0,1] \).

Consequently there can be only \(m \) points, \(m \neq n \), \(x_1, \ldots, x_m \) for which \(\{ M(x_i, \cdot) \} \) are linearly independent, so that clearly
\[
L = \{ g | (M(x_i, \cdot), g) = 0, i = 1, \ldots, m \}.
\]

If \(m < n \), we can find a function \(q_0 \) for which, denoting \(M(x_i, \cdot) \) by \(q_i \), the set \(q_0, \ldots, q_m \) is linearly independent on \(\sigma L \) and \((q_0, g) = 0 \) for all \(g \) in \(L \). But then the mapping
\[
T: g \mapsto ((q_0, g), \ldots, (q_m, g)),
\]
of the set \(S \) of all strategies into \(m + 1 \) space, takes \(S \) into a convex subset containing \((0, \ldots, 0) \) (since \(L \) is non-void).

But \(T(S) \) intersects the line \((t, 0, \ldots, 0) \) in only one point (since \((q_0, g) = 0 \) for \(g \) in \(L \))—thus \((0, 0, \ldots, 0) \) is a boundary point and we have a supporting hyperplane at this point given by constants (not all zero) \(a_0, \ldots, a_m \). Thus
\[
\sum_{i=0}^{\infty} a_i(q_i, g) \geq 0
\]
for all g in S, hence $\sum a_i q_i(y) \leq 0$ for y in σ-L. If
inequality holds for any y it holds in some neighborhood, and
this is, of course, of positive measure with respect to some
g in L (from the definition of σ-L), whence $\sum a_i(q_i, g) > 0$
for some g in L — a contradiction. Thus $\sum a_i q_i = 0$ on
σ-L, which contradicts the linear independence on σ-L, and
we must have $m = n$.

Thus the theme of things is as follows: The necessary
and sufficient condition that $K \times L$ be the solution set
for a game with continuous payoff on the square (where
K and L are non-void ω^* closed convex sets of
strategies) is that one of the following hold:

(a) $\sigma K = [0, 1] = \sigma$-$L$ and K and L are the inter-
section of the same number (finite if and only if
the game is polynomial-like) of independent
containing hyperplanes

(b) $\sigma K = [0, 1] \neq \sigma$-$L$, L is the intersection of
hyperplanes and K has as many independent contain-
ing hyperplanes as L

(c) $\sigma K \neq [0, 1] \neq \sigma$-$L$.

The constructions we have used can be duplicated in
in the case of a game with continuous payoff played on a pair
of infinite compact metric spaces; the character of solution
sets, however, involves slightly different conditions:
\(\sigma K = [0,1] = \sigma L \) must be replaced by \(\sigma K, \sigma L \) open,
\(\sigma K = [0,1] \not\subset \sigma L \) by \(\sigma K \) open, \(\sigma L \) not open,
\(\sigma K \not\subset [0,1] \not\subset \sigma L \) by \(\sigma K \) and \(\sigma L \) not open. In the case of
a unique optimal strategy forming \(K \) and another forming \(L \)
we are thus guaranteed a game having \(K \times L \) as the solution
set, which generalizes the result of [2].

As a final remark, we note that solution sets for
symmetric games on the square (where \(M(x,y) = -M(y,x) \)) can be
easily described. For such games the value is always zero
and any optimal strategy for one player is optimal for his
opponent, so that a solution set is of the form \(K \times K \). The
necessary and sufficient condition that \(K \times K \) be the solution
set of a symmetric game is that either

(a) \(\sigma K = [0,1] \) and \(K \) is the intersection of an even
 (we take \(\infty \) as even) number of independent hyper-
 planes, or

(b) \(\sigma K \not\subset [0,1] \).

For if \(\sigma K = [0,1] \) and \(K \) is the intersection of an
even number of independent hyperplanes given by functions
\(\{ p_n \} \) (which we may take orthonormal), then, dividing these
into two sets \(\{ p_n \}, \{ p'_n \} \) of equal cardinality, we may set

\[
M(x,y) = \sum a_n [p_n(x)p'_n(y) - p'_n(x) p_n(y)],
\]

which is easily seen to have \(K \times K \) as its solution, and is
symmetric. On the other hand, if \(K \times K \) is the solution set
of a game with payoff M and $\sigma K = [0,1]$, then K is, of course, the intersection of a set of hyperplanes. If only a finite number of these are independent, then, as before, M is polynomial-like, that is,

$$M(x,y) = \sum_{n=1}^{k} \psi_n(x) \psi_n(y),$$

where $\{\psi_n\}$ and $\{\psi_n\}$ are linearly independent sets of functions. Since M is symmetric

$$M(x,y) = -M(y,x) = -\sum_{n=1}^{k} \psi_n(y) \psi_n(x),$$

so

$$M(x,y) = \frac{1}{2} \sum_{n=1}^{k} [\psi_n(x) \psi_n(y) - \psi_n(y) \psi_n(x)].$$

If the functions $\{\psi_n, \psi_n\}$ are not a linearly independent set, replacement of a dependent ψ or ψ again yields a sum of the same type, and we finally obtain a similar expression for M in which the set $\{\psi_n, \psi_n\}$ is linearly independent; however, there are an even number of terms in the resulting sums, and thus there must be an even number of independent hyperplanes determining K.

In case (b), $K = S(\psi_n; p_n)$, and we may set

$$M(x,y) = \sum a_n \left[k_n(y) \psi_n(x) + n m_n(y) p_n(x) - k_n(x) \psi_n(y) - n m_n(x) p_n(y) \right]$$

to obtain a symmetric game in which $K \times K$ is the solution set.
REFERENCES

1. I. Glicksberg and O. Gross, Optimal Sets for Games over the Square, RM-889.

2. I. Glicksberg and O. Gross, Continuous Games with Given Unique Solutions, RM-620.