A BOMBER-FIGHTER DUEL

Richard Bellman and David Blackwell

RM-165

14 June 1949

This is a working paper. It may be expanded, modified, or withdrawn at any time. The views, conclusions, and recommendations expressed herein do not necessarily reflect the official views or policies of the United States Air Force.
A BOMBER–FIGHTER DUEL

Richard Bellman and David Blackwell

The problem considered here is that of a fighter, capable of firing a single rocket burst, attacking a bomber, which defends itself by firing intermittently. The value of the game and a good strategy for the bomber are presented for certain cases, the main restriction being that the bomber has a relatively small amount of ammunition. Even for this case, a good strategy for the fighter has not yet been discovered. The strategies for the bomber are those discovered by H. K. Weiss at Aberdeen; thus our results are in part a verification of Weiss' work.

The payoff function. Consider a fighter F and a bomber B approaching each other along predetermined paths at predetermined speeds during a time interval $(0, 1)$. F chooses a time t at which to fire his rockets, and leaves the scene of action immediately thereafter. B chooses a subset S of $(0, 1)$ of measure δ (fixed) on which to concentrate his fire: the points in S specify the times at which the trigger is depressed. Suppose a bullet fired by B at time x reaches F at time $T(x) > x$. If F fires his rockets at $T(x)$, only bullets fired by B before x can be effective. We describe this by saying that F chooses x, $0 \leq x \leq 1$, meaning that he decides to fire at time $T(x)$, and denote F's accuracy when he chooses x (i.e., when he fires at $T(x)$) by $a(x)$. If the value of the conflict to F is $\alpha > 0$ if B is destroyed, $-\beta \leq 0$ if F is destroyed, and 0 if both survive (both cannot be destroyed), the
payoff to F is

\[v(x, S) = \alpha a(x) \Phi(x, S) - \beta \left[1 - \Phi(x, S) \right] \]

\[= \left[\alpha a(x) + \beta \right] \Phi(x, S) - \beta, \]

where \(\Phi(x, S) \) is the probability that F survives all bullets fired before \(x \), when B uses firing policy S. Conventionally, the accuracy of B is specified by a function \(r(x) \), such that \(r(x)dx \) is the probability of a kill during the time interval \(x, x + dx \) if the trigger is depressed throughout the interval. Then

\[- \int_0^x s(y) r(y) dy \]

\[\Phi(x, S) = e \]

where \(s(y) \) is the characteristic function of S. Now if \(p(y) \) is any function, \(0 \leq p(y) \leq 1 \), \(\int_0^1 p(y) dy = \delta \), there is a set S of measure \(\delta \) such that \(\Phi(x, S) \) approximates

\[- \int_0^x p(y) r(y) dy \]

\[\Phi(x, p) = e \]

uniformly in \(x \). We therefore extend B's admissible pure strategies to the class of p's defined above. \(p(y) \) may now be interpreted as the intensity of fire at time \(y \), and the restriction \(p(y) \leq 1 \) means simply that there is a maximum intensity of fire which cannot be exceeded.

Omitting the additive constant \(-\beta \), which does not influence the analysis of the game, we have the payoff
\[v(x, p) = A(x) \Phi(x, p), \]

\[0 \leq x \leq 1, \ 0 \leq p(y) \leq 1, \ \int_{0}^{1} p(y)dy = \delta. \] We shall suppose that \(A(x), r(y) \) are continuous, non-negative, and monotone increasing.

Solution of the game. Shapley [RM-118] has proved that \(B \) never needs to use mixed strategies. In fact, if \(G(p) \) is any mixed strategy, he shows that the pure strategy \(p^*(y) = \int p(y)dG(p) \) is at least as effective as \(G(p) \) against every \(x \). Thus

\[\inf_{G(p)} \sup_{x} v[x, G] = \inf_{p} \sup_{x} v(x, p) = \nu, \]

where \(\nu \) is the value of the game.

We now prove that if one pure strategy \(p \) is better than another against some \(x \), there is another \(x \) against which it is worse. Formally,

Lemma. For any two strategies \(p_1(y), p_2(y), v(x, p_1) \geq v(x, p_2) \) for all \(x \) implies \(p_1 = p_2 \) almost everywhere (so that \(v(x, p_1) = v(x, p_2) \) for all \(x \)).

Proof. If \(v(x, p_1) \geq v(x, p_2) \) for all \(x \), then

\[\int_{0}^{x} p_1(y)r(y)dy \leq \int_{0}^{x} p_2(y)r(y)dy \text{ for all } x. \]

Writing \(p_2 - p_1 = f, \int_{0}^{x} f(y)r(y)dy = \Psi(x) \), we have \(f = \frac{\Psi'}{r} \), so that

\[\int_{0}^{1} \frac{d\Psi(x)}{r(x)} = 0, \ \Psi(x) \geq 0 \text{ for all } x. \] Integrating by parts yields

\[\lim_{\epsilon \to 0} \left[\frac{\Psi(1)}{r(1)} - \frac{\Psi(\epsilon)}{r(\epsilon)} + \int_{\epsilon}^{1} \frac{\Psi(x)dr(x)}{r^2(x)} \right] = 0. \]
But \(\Psi(\varepsilon) \leq r(\varepsilon) \int_0^\varepsilon |f(x)| \, dx \) (\(r \) is monotone increasing), so that
\[
\frac{\Psi(\varepsilon)}{r(\varepsilon)} \to 0 \text{ as } \varepsilon \to 0.
\]
Thus \(\int_\varepsilon^1 \frac{\Psi(x)dr(x)}{r^2} = 0 \) for every \(\varepsilon > 0 \),

\[
\frac{\Psi}{r^2} = 0 \text{ a.e., } \Psi = 0 \text{ a.e., } fr = 0 \text{ a.e., } \text{ and } f = 0 \text{ a.e.}
\]

Suppose the functions \(A(x), r(x) \) satisfy the following condition

(1): there is a \(c_0 < 1 \) such that \(m(x) = \frac{A'(x)}{A(x)r(x)} \leq 1 \) for \(c_0 \leq x \leq 1 \).

This condition is satisfied by a large class of functions \(A, r \)
(including some that look reasonable, although actual data will have
to be inspected to check this; cf. the example below). Define

\[
\delta_0 = \int_{c_0}^1 m(x) \, dx.
\]

If \(\delta \leq \delta_0 \), there is a \(c \geq c_0 \) such that

\[
\int_c^1 m(x) \, dx = \delta.
\]

Thus, if (1) holds and if \(\delta \leq \delta_0 \), the function

\[
p_0(x) = \begin{cases}
0 & \text{for } 0 \leq x \leq c \\
m(x) & \text{for } c < x \leq 1
\end{cases}
\]

is an admissible strategy, where \(c \) is chosen so that \(\int_c^1 m(x) \, dx = \delta \).

Theorem. If \(p_0 \) is an admissible strategy, it is a good strategy,
and the value of the game is \(A(c) \).

Proof. By substitution, we obtain

\[
v(x, p_0) = \begin{cases}
A(x) & \text{for } 0 \leq x \leq c \\
A(c) & \text{for } c \leq x \leq 1
\end{cases}.
\]

Thus \(v(x, p_0) \) is constant over the interval \((c, 1)\). It was in fact
this property of \(p_0 \) which led to its suggestion by Weiss. Since
\[\sup_x v[x, p_0] = A(c), \] the theorem will be proved if we show that, for any \(p(x) \), \(\sup_x v[x, p] \geq A(c) \). It follows from the lemma that, unless \(p = p_0 \) a.e., there is an \(x^* \) with \(v[x^*, p] > v[x, p_0] \). This \(x^* \) must exceed \(c \), since always \(v(x, p) \leq A(x) \), and \(v(x, p_0) = A(x) \) for \(x \leq c \). Then \(v(x^*, p) > v(x^*, p_0) = A(c) \), and the theorem is proved. In fact we have \(\sup_x v(x, p) > A(c) \) unless \(p = p_0 \) a.e., so that \(p_0 \) is the only good strategy.

Example. As an example, consider the case \(\beta = 0, \alpha = 1, r(x) = k^2 x \). Then \(\lambda(x) = x, m(x) = (kx)^{-2} \). If \(k > 1 \), (2) is satisfied, so that we suppose \(k > 1 \). \(c_0(k) = k^{-1}, \delta_0 = \int_{k^{-1}}^1 (kx)^{-2} dx = \frac{k^{-1}}{k^2} \). The value \(v(k) \) to \(F \) when \(B \) has the maximal amount of ammunition \(\delta_0 \) is \(\frac{1}{k} \).

The graphs of \(\delta_0(k) \), \(v(k) \) are shown below:

For fixed \(k \), the good strategy for \(B \) is shown below, where \(c \) is chosen so that \(\int_c^1 m(x)dx = \delta \).