Russia’s Limit of Advance

Scenarios
This report documents the scenarios developed to support the research and analysis presented in the RAND report *Russia's Limit of Advance: Analysis of Russian Ground Force Deployment Capabilities and Limitations*, available online at www.rand.org/pubs/research_reports/RR2563. The two reports were produced as part of the project *Defeating Russian Deployed Joint Forces*, sponsored by the Office of the Deputy Chief of Staff, G-3/5/7, U.S. Army. The purpose of the project was to assess challenges that deployed Russian forces pose to U.S. Army forces; identify opportunities to defeat Russian deployed forces in a range of environments and at various levels of conflict; identify limitations to Russia’s ground force deployment capabilities, including logistics, lines of communication, deployed force protection, air defense, system ranges, command and control, and joint integration; and recommend ways for the U.S. Army and the joint force to defeat Russia’s deployed forces in multiple prospective combat scenarios.

This research was conducted within the RAND Arroyo Center’s Strategy, Doctrine, and Resources Program. RAND Arroyo Center, part of the RAND Corporation, is a federally funded research and development center (FFRDC) sponsored by the United States Army.

RAND operates under a “Federal-Wide Assurance” (FWA00003425) and complies with the *Code of Federal Regulations for the Protection of Human Subjects Under United States Law* (45 CFR 46), also known as “the Common Rule,” as well as with the implementation guidance set forth in U.S. Department of Defense (DoD) Instruction 3216.02. As applicable, this compliance includes reviews and approvals by RAND’s Institutional Review Board (the Human Subjects Protection Committee) and by the U.S. Army. The views of sources utilized in this study are solely their own and do not represent the official policy or position of DoD or the U.S. government.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>Figures and Table</td>
<td>vii</td>
</tr>
<tr>
<td>Summary</td>
<td>ix</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td></td>
</tr>
<tr>
<td>Kazakhstan Scenario</td>
<td>1</td>
</tr>
<tr>
<td>Key Points from the Kazakhstan Scenario</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td></td>
</tr>
<tr>
<td>Tajikistan Scenario</td>
<td>7</td>
</tr>
<tr>
<td>Key Points from the Tajikistan Scenario</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER THREE</td>
<td></td>
</tr>
<tr>
<td>Serbia Scenario</td>
<td>13</td>
</tr>
<tr>
<td>Key Points from the Serbia Scenario</td>
<td>18</td>
</tr>
<tr>
<td>CHAPTER FOUR</td>
<td></td>
</tr>
<tr>
<td>Syria Scenario</td>
<td>19</td>
</tr>
<tr>
<td>Key Points from the Syria Scenario</td>
<td>24</td>
</tr>
<tr>
<td>CHAPTER FIVE</td>
<td></td>
</tr>
<tr>
<td>Venezuela Scenario</td>
<td>25</td>
</tr>
<tr>
<td>Key Points from the Venezuela Scenario</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER SIX</td>
<td></td>
</tr>
<tr>
<td>Ukraine “+1” Scenario</td>
<td>31</td>
</tr>
<tr>
<td>Key Points from the Ukraine Scenario</td>
<td>36</td>
</tr>
<tr>
<td>Bibliography</td>
<td>37</td>
</tr>
</tbody>
</table>
Figures and Table

Figures

1.1. Kazakhstan Scenario Deployment Range ... 1
1.2. Russian Forces in the Kazakhstan Scenario .. 2
1.3. Kazakhstan Scenario Movement Plan .. 3
1.4. Kazakhstan Scenario Initial Deployment Wave Assumptions 4
1.5. Kazakhstan Scenario Second Deployment Wave Assumptions 5
1.6. Kazakhstan Scenario Ground Movement Assumptions 6
2.1. Tajikistan Scenario Deployment Range ... 7
2.2. Russian Forces in the Tajikistan Scenario ... 8
2.3. Tajikistan Scenario Movement Plan ... 9
2.4. Tajikistan Scenario Airlift Assumptions ... 10
2.5. Tajikistan Scenario Rail Assumptions ... 11
2.6. Tajikistan Scenario Movements to Tactical Assembly Areas 12
3.1. Serbia Scenario Deployment Range ... 13
3.2. Russian Forces in the Serbia Scenario ... 14
3.3. Serbia Scenario Movement Plan ... 15
3.4. Serbia Scenario Airlift Assumptions .. 16
3.5. Serbia Scenario Sealift Assumptions ... 17
3.6. Serbia Scenario Ground Movement Assumptions ... 18
4.1. Syria Scenario Deployment Range ... 19
4.2. Russian Forces in the Syria Scenario .. 20
4.3. Syria Scenario Movement Plan ... 21
4.4. Syria Scenario Airlift Assumptions ... 22
4.5. Syria Scenario Sealift Assumptions .. 23
4.6. Syria Scenario Ground Movement Assumptions ... 24
5.1. Venezuela Scenario Deployment Range .. 25
5.2. Russian Forces in the Venezuela Scenario ... 26
5.3. Venezuela Scenario Movement Plan ... 27
5.4. Venezuela Scenario Airlift Assumptions ... 28
5.5. Venezuela Scenario Sealift Assumptions .. 29
5.6. Venezuela Scenario Ground Movement Assumptions 30
6.1. Ukraine Scenario Deployment Range .. 31
6.2. Russian Forces in the Ukraine Scenario ... 32
6.3. Ukraine Scenario, Operational Phase 1 ... 33
6.4. Ukraine Scenario, Operational Phase 2 ... 34
6.5. Timeline of Units Ready to Deploy in the Ukraine Scenario 35
6.6. Ukraine Scenario Rail Assumptions ... 36
Table

S.1. Summary Scenario Descriptions... x
Summary

By the time of its 2014 incursion into Crimea, Ukraine, Russia had regained a significant portion of the military power it lost after the fall of the Soviet Union, reemerging as a perceived threat to democracy. It soon became clear that Russia had broader interests than Europe—and perhaps a capacity to realize wider-ranging military objectives. Since the mid-2000s, Russia has been quietly accelerating its global engagements and has, more recently, increased its interests in Venezuela, various African states, and Asia. These developments have spurred renewed interest in Russian capabilities in the analytic community.

The focus of this research, Russia’s ground combat deployment capability, stemmed primarily from sponsor requirements and resource limitations, but the insights from this analysis help fill an important knowledge gap that extends beyond an understanding of Russia’s ability to support ground deployments. We argue that the capacity to deploy ground combat units is a better measure of overall conventional power projection than air or naval power alone. Air and naval forces are limited by an array of overflight and passage restrictions, but they also benefit from international agreements that guarantee considerable freedom of movement. In contrast, ground deployment depends on and reflects global and regional diplomatic influence or, alternatively, brute force to obtain on-the-ground access. Air and naval forces can be deployed independently, but ground forces require joint and, often, combined operations that tax a broader cross-section of the Russian military infrastructure.

This report presents notional Russian Ground Force (RGF) military deployment scenarios that informed the analysis in a companion report, Russia’s Limit of Advance: Analysis of Russian Ground Force Deployment Capabilities and Limitations (available at www.rand.org/pubs/research_reports/RR2563). That analysis examined seven notional scenarios, using one deployment to illustrate the analytical process: the Kuril Islands. This report presents detail on the five other scenarios that we analyzed to generate the findings presented in that report, as well as an additional informative scenario on Ukraine (our “+1” scenario). Table S.1 summarizes all seven scenarios.

Each chapter of this report is dedicated to one of six scenarios (excluding the Kuril Islands) and includes slides from a series of larger briefings prepared for this project. We selected slides that were particularly relevant to the focus of our analysis—RGF deployment capability. In the interest of brevity, we do not include informational slides about the scenarios. However, each chapter opens with a brief overview of the scenario it addresses.
These scenarios are strictly notional. The purpose of developing and presenting the scenarios was to explore various permutations of Russian ground combat power deployment capability, not to explore politically viable national security scenarios. The scenarios do not forecast any particular political events, nor should they be interpreted as presenting conclusions about Russian combat capabilities. In fact, we chose the scenarios with the knowledge that they might have limited political feasibility.

All information that we used to develop the scenarios is drawn from open sources; the bibliography at the end of this report lists the materials that we consulted, grouped by topic. See the companion report for our full analysis and findings.
Acknowledgments

We thank MG William Hix for sponsoring our research. MG Christopher McPadden supported the continuation and completion of this project through 2018. Our project monitor, LTC Andrew Brown, also provided valuable support, feedback, and insights throughout the research process. RAND Arroyo Center staff, including Strategy, Doctrine, and Resources program director Sally Sleeper and Francisco Walter, were instrumental in creating this research opportunity and in supporting our efforts. We also thank our Army sponsor staff, including Tony Vanderbeek and Mark Calvo, for their continuing interest in our research and for supporting our work with enthusiasm.

We are grateful to RAND colleagues Raphael Cohen and Ryan Schwankhart and to our external reviewer, Kimberly J. Marten, chair of the Department of Political Science at Barnard College, all of whom provided insightful reviews and feedback that helped shape this report and its companion volume.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td>armored personnel carrier</td>
</tr>
<tr>
<td>APOD</td>
<td>aerial port of debarkation</td>
</tr>
<tr>
<td>APOE</td>
<td>aerial port of embarkation</td>
</tr>
<tr>
<td>BTG</td>
<td>battalion tactical group</td>
</tr>
<tr>
<td>IFV</td>
<td>infantry fighting vehicle</td>
</tr>
<tr>
<td>MR</td>
<td>motorized rifle</td>
</tr>
<tr>
<td>MRAP</td>
<td>mine-resistant, ambush-protected (vehicle)</td>
</tr>
<tr>
<td>MRL</td>
<td>multiple rocket launcher</td>
</tr>
<tr>
<td>MTO</td>
<td>motor transport operation</td>
</tr>
<tr>
<td>RGF</td>
<td>Russian Ground Forces</td>
</tr>
<tr>
<td>SAM</td>
<td>surface-to-air missile</td>
</tr>
<tr>
<td>SOF</td>
<td>special operations forces</td>
</tr>
<tr>
<td>TAA</td>
<td>tactical assembly area</td>
</tr>
<tr>
<td>UAV</td>
<td>unmanned aerial vehicle</td>
</tr>
<tr>
<td>VDV</td>
<td>Vozdushno-Desantnye Voyska [Russian Airborne Forces]</td>
</tr>
</tbody>
</table>
In the Kazakhstan scenario, Russia deploys ground combat forces to Kazakhstan to counter Chinese intervention and protect Russian civilians. This is a border case involving the deployment of almost 14,000 troops. The purposes of this scenario were to test Russia’s deployment capability in a location with clear trade-offs between rail and airborne movement and to show how even a scenario just outside Russia’s Western and Southern military districts can be challenging.

Figures 1.1–1.7 show, respectively, the deployment range, available Russian forces, movement plan, initial-wave assumptions, second-wave assumptions, and ground movement assumptions.

Figure 1.1
Kazakhstan Scenario Deployment Range

- **BORDER** → Adjacent to Russian border
- **NEAR** → 1 country removed from border
- **FAR** → 2 or more countries removed from border
Figure 1.2
Russian Forces in the Kazakhstan Scenario

Joint Task Force
Command Headquarters
Yekaterinburg

GROUND FORCES

Mechanized BTGs
• 328 BMP-series IFVs
• 166 BTR-series APCs
• 40 MT-LB APCs
• 168 T-72s

Artillery group task-organized with BTGs
• 40 BM-21s
• 48 2S19s
• 32 2S3s
• 8 2S34s
• 32 Shturm-S systems

VDF (airborne) and Spetsnaz
• 75 BMP-series IFVs
• 78 BMDs
• 136 BTR-series APCs
• 24 Tigrs (light jeeps)

Air defense
• 6 Buk missile systems
• 16 S-300/SA-10s

Logistics support
1,632 vehicles

Total personnel 13,820
not including air-naval
Combat vehicles 1,562
Support vehicles 2,095
Combat aviation 90

Justiceification: Provide rapid-reaction force capable of extraction while also deterring Chinese military incursion into Kazakhstan

NOTE: APC = armored personnel carrier. BTG = battalion tactical group. IFV = infantry fighting vehicle. VDV = Vozdushno-Desantnye Voyska [Russian Airborne Forces]. Some vehicle-type abbreviations in this and similar figures, such as MT, BMD, BMP, BRDM, and BTR, are transliterated acronyms commonly used by the U.S. defense analytic community. For example, BMD is boyevaya mashina desanta, or airborne combat vehicle.
General steps of the joint task force's movement by air and rail to Kazakhstan, as well as its movement en route to tactical assembly areas.

Two waves of deployment: VDV and Spetsnaz units (and SAMs) deploy by a mix of air and rail, followed by major combat forces arriving by rail.

Additional deployment activities not shown include the following:
- Task organization (generating and assembling the joint task force)
- Reception, staging, onward movement, and integration preparation prior to unit arrivals
- Marshaling area preparation prior to unit arrivals

Readiness of units to deploy once notice to move is received may delay deployment initiation. Less risk of delay for VDV and Spetsnaz units.

Heavy combat and support equipment, some class supplies

Load on railcars

Transit

Unload at TAAs

Unload at destination

Road march to TAAs

Personnel, airborne gear, some class supplies

Load on aircraft at APOE

Transit to Kazakhstan

NOTE: SAM = surface-to-air missile. APOD = aerial point of debarkation. APOE = aerial point of embarkation. TAA = tactical assembly area.
Figure 1.4
Kazakhstan Scenario Initial Deployment Wave Assumptions

Assumptions
- Personnel, equipment, and some class supplies for VDV, Spetsnaz, and one SAM unit deploy to Aktau and Astana.
- 60 of 110 Il-76s and 6 of 9 An-124s are available.

Demand to lift initial force package exceeds available airlift inventory, necessitating two rounds of transport with a portion of the aircraft needing to make roundtrips. With the extra turnaround time required, it would take at least 7.5 days to close the equipment and personnel. This does not include the airlift of class supplies, whose inclusion would further delay closure.

*Airlifting only the Aktau force package (~3 days to close) and then raling the Astana force package (151 railcars, 5 trains) leads to closure of total initial wave deployment in around 4–5 days.

<table>
<thead>
<tr>
<th>Wave 1</th>
<th>Assess to lift</th>
<th>An-124</th>
<th>Il-76</th>
<th>% of equipment lifted</th>
<th>Personnel lift requirement</th>
<th>Origin</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>24th Spetsnaz Brigade</td>
<td>4</td>
<td>0</td>
<td>100</td>
<td>3 large aircraft</td>
<td>Novosibirsk</td>
<td>Aktau</td>
<td></td>
</tr>
<tr>
<td>56th Air Assault Brigade</td>
<td>2</td>
<td>36</td>
<td>100</td>
<td>12 large aircraft</td>
<td>Kamyshin</td>
<td>Aktau</td>
<td></td>
</tr>
<tr>
<td>10th Spetsnaz Brigade</td>
<td>0</td>
<td>14</td>
<td>100</td>
<td>8 large aircraft</td>
<td>Molkino</td>
<td>Astana</td>
<td></td>
</tr>
<tr>
<td>31st Air Assault Brigade</td>
<td>0</td>
<td>10</td>
<td>23</td>
<td>12 large aircraft</td>
<td>Ulyanovsk</td>
<td>Astana</td>
<td></td>
</tr>
<tr>
<td>Sortie totals</td>
<td>6</td>
<td>60</td>
<td>NA</td>
<td>35 aircraft</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wave 2</th>
<th>Assess to lift</th>
<th>An-124</th>
<th>Il-76</th>
<th>% of equipment lifted</th>
<th>Personnel lift requirement</th>
<th>Origin</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>31st Air Assault Brigade</td>
<td>6</td>
<td>19</td>
<td>77</td>
<td>0</td>
<td>Ulyanovsk</td>
<td>Astana</td>
<td></td>
</tr>
<tr>
<td>11th Air Assault Brigade</td>
<td>0</td>
<td>7</td>
<td>100</td>
<td>12 large aircraft</td>
<td>Sosnovy Bor</td>
<td>Astana</td>
<td></td>
</tr>
<tr>
<td>297th Anti-Aircraft Missile Brigade</td>
<td>0</td>
<td>14</td>
<td>100</td>
<td>1 large aircraft</td>
<td>Alkino</td>
<td>Astana</td>
<td></td>
</tr>
<tr>
<td>Sortie totals</td>
<td>6</td>
<td>40</td>
<td>NA</td>
<td>13 aircraft</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Calculations do not take into account the airlift of class supplies.
Figure 1.5
Kazakhstan Scenario Second Deployment Wave Assumptions

Assumptions
- MR and SAM units move equipment by rail to Aktau and three tactical assembly areas in eastern Kazakhstan: Oskemen, Aktogay, and Taldykorgan.
- Railcars and trains are readily available and in position when units are ready to deploy.
- 1 day at origin rail loading point, travel speed of 40 km/hr.
- Destinations clear train load every 4 hours.

<table>
<thead>
<tr>
<th>Assets to lift</th>
<th>Total railcars (equipment + personnel)</th>
<th>Number of trains</th>
<th>Origin</th>
<th>Destination</th>
<th>Destination (km)</th>
<th>Time (days to load+ travel+ unload)</th>
</tr>
</thead>
<tbody>
<tr>
<td>511th Guards SAM Regiment</td>
<td>26 (22 + 4)</td>
<td>1</td>
<td>Engels Air Base</td>
<td>Taldykorgan</td>
<td>3,125</td>
<td>4.4</td>
</tr>
<tr>
<td>185th SAM Regiment</td>
<td>24 (20 + 4)</td>
<td>1</td>
<td>Yekaterinburg</td>
<td>Oskemen</td>
<td>2,037</td>
<td>3.3</td>
</tr>
<tr>
<td>74th Guards MR Brigade</td>
<td>215 (185 + 30)</td>
<td>4</td>
<td>Yurga</td>
<td>Aktogay</td>
<td>1,119</td>
<td>2.9</td>
</tr>
<tr>
<td>35th MR Brigade and 106th MTO Brigade</td>
<td>683 (593 + 45)</td>
<td>12</td>
<td>Aleyk</td>
<td>Taldykorgan</td>
<td>937</td>
<td>4.0</td>
</tr>
<tr>
<td>37th MR Brigade</td>
<td>211 (181 + 30)</td>
<td>4</td>
<td>Khyagt</td>
<td>Oskemen</td>
<td>2,757</td>
<td>4.5</td>
</tr>
<tr>
<td>15th MR Brigade and 105th MTO Brigade</td>
<td>604 (559 + 45)</td>
<td>11</td>
<td>Roshchinsky</td>
<td>Aktau</td>
<td>1,983</td>
<td>4.9</td>
</tr>
<tr>
<td>21st MR Brigade</td>
<td>215 (185 + 30)</td>
<td>4</td>
<td>Totskoye</td>
<td>Aktau</td>
<td>1,582</td>
<td>3.3</td>
</tr>
</tbody>
</table>

NOTE: Railcar calculations do not include class supplies. This could at least double the railcar demand. MR = motorized rifle. MTO = motor transport operation.
Figure 1.6
Kazakhstan Scenario Ground Movement Assumptions

Assumptions
- There is unopposed, faster administrative ground movement to TAAs.
- There are preestablished forward logistics areas.
- Spetsnaz remain in Astana.

<table>
<thead>
<tr>
<th>TAA</th>
<th>Almaty</th>
<th>Taraz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>31st Air Assault Brigade</td>
<td>11th Air Assault Brigade</td>
</tr>
<tr>
<td>Distance (km)</td>
<td>1,215</td>
<td>1,601</td>
</tr>
<tr>
<td>Vehicles</td>
<td>196</td>
<td>45</td>
</tr>
<tr>
<td>Column length (km)</td>
<td>11.8 (day)</td>
<td>2.7 (day)</td>
</tr>
<tr>
<td></td>
<td>17.6 (night)</td>
<td>4.0 (night)</td>
</tr>
<tr>
<td>Completion time (days)</td>
<td>2.0</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Assumptions
- 50 m vehicle spacing during the day
- 75 m spacing at night
- 30% time spent stopped for rest/maintenance
- Road conditions will limit movement to an average of 40 km/h during the day, 30 km/hr at night

Delays may be caused by weather, terrain, movement at night, or vehicle breakdowns.

NOTE: Estimates assume formation along a single road. Other options are stagger or diamond formations if road width allows.

Key Points from the Kazakhstan Scenario

Russia could deploy its ground force by air, rail, or road relatively quickly, absent Chinese intervention or transportation failures and without considering the class of supply movement (e.g., fuel, food, water, ammunition). Adding sustainment requirements and assuming even noncombat disruption would set the above timelines back days, if not longer. This movement is also highly vulnerable to combat disruption. Chinese interference with the limited road and rail networks or even minimal interference with the airfields—say, a cyberattack against air traffic control or a special operations raid against airfield support teams—could put Russia in an untenable situation.
In this scenario, an extremist group similar to the Islamic State expands its operations into Tajikistan, threatening Russian bases and interests there. Russia deploys a ground combat force to secure its facilities and personnel, as well as to disrupt the group’s activities in Afghanistan with fires and raids.

Figures 2.1–2.6 show, respectively, the deployment range, available Russian forces, movement plan, airlift assumptions, rail assumptions, and movement to tactical assembly areas.

Figure 2.1
Tajikistan Scenario Deployment Range

- **BORDER**: Adjacent to Russian border
- **NEAR**: 1 country removed from border
- **FAR**: 2 or more countries removed from border
Figure 2.2
Russian Forces in the Tajikistan Scenario

GROUND FORCES

Joint Task Force Command
41st Combined Arms Army

6 MR BTGs with
- 248 BMP-2 IFVs
- 48 BTR-80 APCs
- 22 MT-LB APCs
- 6 BRDM-2 reconnaissance vehicles
- 84 T-72B3 tanks
- 28 T-72BM tanks

Spetsnaz
- 1 battalion (25) BTR-80 APCs
- 12 Tigrs (light jeeps)

Artillery Group
1 artillery brigade, 0.5 missile brigades
- 28 BM-21 MRLs
- 24 2S3 Akatsiya self-propelled artillery
- 66 2S19 Msta-S howitzers
- 8 2S34 Khosta-S howitzers
- 24 Sani mortars
- 8 Uragan MRLs
- 6 Iskander-M transporter-erector-launchers

Air Defense
3 anti-aircraft battalions (-)
- 13 2S6M Tunguskas
- 54 9K38 Igla man-portable air defense systems

BORDER TROOPS

FSB

4 detachments with
- 320 BTR-80 APCs
- 60 Ural-4320 trucks
- 24 2S1 SP howitzers
- 24 2S12 Sani mortars
- 24 2S9 Nona mortars

Air
1 squadron (10) Su-34 attack aircraft + support
1 squadron (12) Mi-24P helicopters + support
1 squadron (12) Mi-8AMTSh helicopters + support
3 Tu-22M3 bomber aircraft
1 squadron (11) Su-25 attack aircraft
2 Mi-8 helicopters
2 An-26 transport aircraft

SUPPORT

78 Zastava UAVs
12 Granat-1 UAVs
15 Orlan-10 UAVs
Support vehicles

Total ground personnel 12,140
- Combat vehicles 1,213
- Support vehicles 1,193
- Rotary aviation 26
- UAVs 105

Justification: Deploy a self-sustaining joint combat team capable of reconnaissance-weapon and reconnaissance-strike counterterrorism operations and border security

NOTE: MRL = multiple rocket launcher. UAV = unmanned aerial vehicle.
Figure 2.3
Tajikistan Scenario Movement Plan

General steps of the joint task force's movement by air and rail to Tajikistan. Personnel move to Dushanbe via fixed-wing air and within area of operation via rotary-wing or ground transport.

Additional deployment activities not shown include the following:
- Task organization (generating and assembling the joint task force)
- Reception, staging, onward movement, and integration preparation prior to unit arrivals
- Marshaling area preparation prior to unit arrivals

Readiness of units to deploy once notice to move is received may delay deployment initiation. Less risk of delay for VDV and Spetsnaz units.

NOTE: SOF = special operations forces.
Figure 2.4
Tajikistan Scenario Airlift Assumptions

Assumptions
Spetsnaz and rotary-wing units’ equipment and personnel deploy by air.

<table>
<thead>
<tr>
<th>Assess to lift</th>
<th>Lift requirement (equipment + supplies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spetsnaz units</td>
<td>7–9 Il-76s or 3 An-124s</td>
</tr>
<tr>
<td>Rotary-wing units</td>
<td>6 An-124s to deploy Mi-24s</td>
</tr>
<tr>
<td></td>
<td>6 Il-76s or 4 An-124s to deploy Mi-8s</td>
</tr>
<tr>
<td>Sortie totals</td>
<td>13–16 Il-76s or 9–13 An-124s</td>
</tr>
<tr>
<td>% of estimated available fleet*</td>
<td>~25% of Il-76s</td>
</tr>
<tr>
<td></td>
<td>150–217% of An-124s</td>
</tr>
</tbody>
</table>

*Assumes 60 of 110 Il-76s and 6 of 9 An-124s are available.

Possible deviations from “best-case” air deployment

Risk
Adequate airlift is not available to deploy helicopters.

Mitigating option: Self-deploy
• This increases maintenance issues.
• Helicopters need to make multiple stops.
• Altitude restrictions increase route distance.

Calculations for fixed-wing movement only.

An An-124 unloads an Mi-24 (United Nations Movement Control photo, CC BY-SA 2.0)

<table>
<thead>
<tr>
<th>Platform</th>
<th>Range (km)</th>
<th>Speed (km/hr)</th>
<th>Flight and refueling time (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mi-8</td>
<td>983</td>
<td>224</td>
<td>18.5</td>
</tr>
<tr>
<td>Mi-24</td>
<td>1,000</td>
<td>269</td>
<td>19.5</td>
</tr>
</tbody>
</table>

NOTE: Availability of aircraft for personnel transport is not a stressing factor due to availability of nonmilitary assets. Therefore, this figure focuses on equipment.
Figure 2.5
Tajikistan Scenario Rail Assumptions

Assumption set 1 (rail asset demand)
MR BTGs, artillery and missile units, and MTO battalions move all equipment and class supplies by rail. Railcars and trains are readily available and in position when units are ready to deploy.

<table>
<thead>
<tr>
<th>Assets to transport</th>
<th>Origin</th>
<th>Number of railcars (equipment + personnel)*</th>
<th>Number of trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>74th Guards MR Brigade, 120th Artillery Brigade</td>
<td>Yurga (Kemerovo Oblast)</td>
<td>297 (261 + 36)</td>
<td>5</td>
</tr>
<tr>
<td>35th MR Brigade</td>
<td>Aleysk</td>
<td>219 (189 + 30)</td>
<td>4</td>
</tr>
<tr>
<td>21st MR Brigade</td>
<td>Totskoye</td>
<td>227 (197 + 30)</td>
<td>4</td>
</tr>
<tr>
<td>106th MTO Brigade</td>
<td>Yurga (Kemerovo Oblast)</td>
<td>450 (420 + 30)</td>
<td>8</td>
</tr>
<tr>
<td>119th Missile Brigade</td>
<td>Elanskiy</td>
<td>53 (38 + 15)</td>
<td>1</td>
</tr>
<tr>
<td>Border troops</td>
<td>Central Military District</td>
<td>286 (226 + 60)</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,532</td>
<td>27</td>
</tr>
</tbody>
</table>

* Railcar calculations do not include class supplies, which could at least double railcar demand.

Assumption set 2 (rail closure)

- Rail line to Queb determined too high-risk due to proximity to Afghan border; all equipment is thus sent to Dushanbe.
- No routing issues due to bridge or tunnel limitations.
- Customs and clearances expedited at Kazakh, Uzbek, and Tajik borders.
- One day at origin rail loading point and travel speed of 40 km/hr.
- With 24-hour operations at Dushanbe, train load clears every 4 hours.

Closure of equipment and personnel takes at least 9 days
Figure 2.6
Tajikistan Scenario Movements to Tactical Assembly Areas

Assumptions
• Unopposed, faster administrative ground movement to TAAs
• Preestablished forward logistics areas
• Weight of effort distributed across all five TAAs

<table>
<thead>
<tr>
<th>TAA</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (km)</td>
<td>455</td>
<td>281</td>
<td>195</td>
<td>161</td>
<td>128</td>
</tr>
<tr>
<td>Vehicles</td>
<td>658</td>
<td>658</td>
<td>658</td>
<td>658</td>
<td>658</td>
</tr>
<tr>
<td>Completion time (hrs)</td>
<td>20.0</td>
<td>11.0</td>
<td>8.0</td>
<td>6.8</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Assumptions
• 50 m vehicle spacing during the day, 75 m at night
• 30% of time spent stopped for rest/maintenance
• Road conditions will limit movement to an average of 40 km/h during the day, 30 km/hr at night

Additional considerations
• Column length during the day will be ~40 km, ~60 km at night.
• Many of the roads to TAAs 3–5 are secondary roads, and the M41 highway has difficult terrain, slowing speed.
• Delays may be caused by harassment, attacks, weather, terrain, movement at night, or vehicle breakdowns.

NOTE: Estimates assume formation along a single road. Other options are stagger or diamond formations if road width allows.

Key Points from the Tajikistan Scenario

In this scenario, Russia benefits from its large existing base in Tajikistan and from its long-standing familiarity with the terrain and supply routes. Sustainment would be relatively easy, given existing facilities and storage. However, movement to the tactical assembly areas and areas of operation would be far more challenging than the initial waves of transportation. These movements would require navigating rough terrain, narrow passes, and long distances. Our scenario requires Russia to establish a second sustainment base in Kazakhstan to support operations in Tajikistan and Afghanistan.
This is a small-footprint special operations deployment to respond to a notional attempt to overthrow the Serbian government. Russia deploys a small joint task force to an assembly area in Niš, Serbia, to enable follow-on movement and help defend government facilities and control violent protests in Belgrade and Novi Sad. After a covert insertion of the initial wave of forces is uncovered, Russia must deploy southwest of Serbia through a narrow geographic corridor at Neum in Bosnia and Herzegovina to bypass a NATO air blockade.

Figures 3.1–3.6 show, respectively, the deployment range, available Russian forces, movement plan, airlift assumptions, sealift assumptions, and ground movement assumptions.
Figure 3.2
Russian Forces in the Serbia Scenario

<table>
<thead>
<tr>
<th>GROUND FORCES</th>
<th>MR Brigade (Collective Treaty Security Organization)</th>
<th>Spetsnaz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Task Force Command 76th Air Assault Division Headquarters Element</td>
<td>4,100 contract personnel 36 BMD-4M IFVs 20 BTR-MDM APCs 9 2S9 Nona mortars 9 BTR-ZD APCs 6 BMD-1KSh IFVs 8 1V119 Reostat command vehicles 2 R-30 howitzers 2 R-149 command vehicles 2 R-440 communications vehicles 20 support vehicles (heavy reliance on host-nation support)</td>
<td>1,200 contract personnel 25 BTR-80 APCs 12 Tigr/Lynx (light jeeps) 10 Ural Typhoon-Us 5 support vehicles (heavy reliance on host-nation support)</td>
</tr>
<tr>
<td>VDV (Airborne)</td>
<td>• 1,800 contract personnel 60 BTR-82AM APCs 6 BTR-80 APCs 15 MT-LBs* armored vehicles 12 2S9 Vasilek gun mortars 4 BRDM-2 patrol vehicles 6x ZSU 256M Tunguskas* 30 support vehicles (heavy reliance on host-nation support)</td>
<td>1,800 contract personnel</td>
</tr>
<tr>
<td></td>
<td>* Tracked and would require transport augmentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUPPORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MTO battalion (-) 800 personnel 300 vehicles Engineer company Electronic warfare detachment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total personnel 7,900</td>
<td>Combat vehicles 242 Support vehicles 355 Helicopters 0</td>
</tr>
</tbody>
</table>

Justification: Deploy a self-sustaining joint combat team capable of semi-independent operations in an allied country against violent protestors. Send 76th VDV Division personnel but one BTG of associated equipment.
Figure 3.3
Serbia Scenario Movement Plan

General steps of the joint task force’s movement by air and sea to Serbia, as well as its movement en route to the objective area at Belgrade and Niš.

Deployment occurs in two waves: VDV and Spetsnaz units deploy completely by air, followed by major combat forces arriving by both sea (equipment) and air (personnel).

Additional deployment activities not shown include the following:
- Task organization (generating and assembling the joint task force)
- Reception, staging, onward movement, and integration preparation prior to unit arrivals
- Marshaling area preparation prior to unit arrivals

Readiness of units to deploy once notice to move is received may delay deployment initiation. Less risk of delay for VDV and Spetsnaz units.

Combat order released

Unit selection

Units prepare to deploy

Rail
- Load on railcars
- Transit to and unload at Novorossiysk SPOE
- Road march to marshaling area (Kraljevo)

Sea
- Load on transport ships
- Transit to Neum SPOD
- Unload at Niš
- Road march to Belgrade and Novi Sad

Air
- Load on aircraft at APOE
- Transit to Niš APOD

Ground
- Unload at Niš
- Road march to marshaling area (Kraljevo)
- Acclimation training and vehicle prep
Figure 3.4
Serbia Scenario Airlift Assumptions

Assumption set 1
(affecting air asset demand in first wave: Spetsnaz)
- Russia sends equipment by military aircraft marked for Syrian humanitarian aid to Niš.
- Russia selects flight legs that allow for maximum cargo capacity.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Number of sorties (equipment)</th>
<th>% of available fleet *</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-76</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>An-124</td>
<td>6</td>
<td>100</td>
</tr>
</tbody>
</table>

Sortie calculations are based on weight and do not include class supplies. Class supplies and loading factors will increase the number of sorties required.
* Assumes 60 of 110 II-76s or 6 of 9 An-124s are available.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Number of sorties (personnel)</th>
<th>% of available fleet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large aircraft</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Small aircraft</td>
<td>24</td>
<td>Not relevant **</td>
</tr>
</tbody>
</table>

Assumption set 2
(affecting closure times in first wave: Spetsnaz):
- Because of covert insertion, denial of NATO overflight is not an issue.
- Flight and closure times are not stressing factors.
- Maximum 4 aircraft on the ground, 24-hour operations.
- Only II-76s and heavy aircraft are used.

Assumption set 3
(affecting air asset demand in second wave: VDV)
Russia selects flight legs that allow for maximum cargo capacity.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Number of sorties (equipment)</th>
<th>% of available fleet *</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-76</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>An-124</td>
<td>11</td>
<td>100</td>
</tr>
</tbody>
</table>

Sortie calculations are based on weight and do not include class supplies. Class supplies and loading factors will increase the number of sorties required.
* Assumes 60 of 110 II-76s or 6 of 9 An-124s are available.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Number of sorties (personnel)</th>
<th>% of available fleet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large aircraft</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Small aircraft</td>
<td>83</td>
<td>Not relevant, though small aircraft demand may stress available assets **</td>
</tr>
</tbody>
</table>

Assumption set 4 (two cases):
1. Turkey allows overflight despite NATO refusal.
2. All NATO overflight is denied (Iraq allows).

Initial load at APOE takes 1 day. Assume all fly the same route at the same time (for simplicity).
Malta allows stopping and overflight.
Mix of 6 An-124 and 12 II-76s for equipment, large aircraft for personnel. Each airfield has a maximum of 4 aircraft on the ground and 24-hour operations (~27-hour clearance at each leg for refueling).

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Route Length</th>
<th>Flight Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>No NATO overflight</td>
<td>3 legs; 7,351 km; 10-hour flight</td>
<td></td>
</tr>
<tr>
<td>Turkey overflight</td>
<td>2 legs; 5,794 km; 9.5-hour flight</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
1. Russia has used civilian and other government aircraft to transport troops to Syria, in addition to its own military assets. Availability of transport for personnel is not as limiting a factor as it is for heavy lift assets.
Assumption set 1 (affecting sea asset demand in third wave: MR BTGs)

- MR BTGs and MTO (-) send equipment and class supplies by sea and personnel by air.
- Without access to NATO seaport, Russia must use Bosnia-Herzegovina’s ocean access at Neum, which does not have a sufficient port, cargo handling, or capacity for larger commercial vessels. Russia must therefore conduct beach landings with organic assets, complicated by steep terrain.
- Because of limited inventory, each available Ropucha and Tapir/Alligator must make multiple round-trips to close the force.

Options to move 450 vehicles and initial class supplies

<table>
<thead>
<tr>
<th>Number of sorties</th>
<th>% of available fleet*</th>
</tr>
</thead>
<tbody>
<tr>
<td>~10</td>
<td>333</td>
</tr>
<tr>
<td>~17</td>
<td>243</td>
</tr>
</tbody>
</table>

* Assumes 7 of 15 Ropuchas and 3 of 4 Tapir/Alligators are available.

Assumption set 2 (affecting sea closure time in third wave: MR BTGs)

- Turkey allows passage through Bosporus Strait, allowing use of SPOE at Novorossiysk.
- 24-hour load time at SPOE, 36-hour unload time at SPOD, and travel at 18 knots.
- Maximum of 3 vessels can load and unload at a time.
- Russia uses all 3 available Tapir/Alligators (2 round trips each), 3 Ropuchas (2 round trips each), and remaining 4 Ropuchas (1 trip each).
Figure 3.6
Serbia Scenario Ground Movement Assumptions

Assumption set 1 (administrative ground movement)
50 m vehicle spacing, 50 km/hr, and 20% time spent halted for rest/maintenance/security.

Assumption set 2
VDV forces move before MR BTGs

Potential delays to optimal unit travel times may be caused by harassment or attacks, weather, terrain, movement at night as opposed to day, or vehicle breakdowns. The latter is more likely if units’ deployment to this stage sacrificed post-sealift vehicle maintenance to expedite onward movement.

<table>
<thead>
<tr>
<th>Convoy route</th>
<th>Niš to Novi Sad (417 km)</th>
<th>Niš to Belgrade (239 km)</th>
<th>Neum to Novi Sad (482 km)</th>
<th>Neum to Belgrade (484 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave</td>
<td>VDV</td>
<td>VDV</td>
<td>MR BTGs</td>
<td>MR BTGs</td>
</tr>
<tr>
<td>Vehicles*</td>
<td>62</td>
<td>62</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Column length (km)**</td>
<td>3.72</td>
<td>3.72</td>
<td>13.50</td>
<td>13.50</td>
</tr>
<tr>
<td>Completion time (hours)</td>
<td>10.5</td>
<td>6.0</td>
<td>13.9</td>
<td>14.0</td>
</tr>
</tbody>
</table>

*Assumes effort split evenly between both. As shown in the maps, columns try to avoid similar routes to reduce road congestion

** Assumes file formation along single road. Multiple roads may be taken, but they must be secured. Coordination of convoy would also be more difficult.

Key Points from the Serbia Scenario

This scenario highlights the limits imposed by international restrictions. In this case, Serbia is a short geographic distance from Russia’s Western Military District, but it is effectively nested among NATO countries. Using the narrow pathway from Neum would be practical only for a small force, not for a major deployment. Russia could try to bully its way into Serbia, but it would risk triggering a NATO Article 5 contingency. Absent sufficient access, even such a near deployment becomes quite challenging for Russian ground forces.
When we developed this scenario in early 2017, Russia was continuing to support the Syrian armed forces’ operations against various insurgent and terrorist groups. For the notional 2023 scenario, we selected an internal deployment location within Syria (Palmyra) that was far enough away from the main Russian bases in the northwest of the country to stress Russian capabilities. Notionally, a Russian Spetsnaz unit is encircled by a large, well-armed insurgent force within and around Palmyra. Syrian ground combat units supporting the Spetsnaz unit are incapable of breaking through to rescue or reinforce the trapped Russian soldiers. Russian ground forces in Syria are otherwise engaged in vital security missions, so Russia deploys a brigade combat team to its airfield at Khmeimim, its seaport at Latakia, and then over ground to Palmyra.

This is one of two far scenarios. Figures 4.1—4.6 show, respectively, the deployment range, available Russian forces, movement plan, airlift assumptions, sealift assumptions, and ground movement assumptions.
Figure 4.2
Russian Forces in the Syria Scenario

GROUND FORCES

Joint Task Force Command
27th MR Brigade and brigade headquarters element

2 MR BTGs, each with
- 50 BTR-82/82A APCs
- 8 120-mm mortars
- 10 T-90A main battle tanks
- 2 2S6M1 (SA-19) air defense vehicles
- Organic sustainment

Brigade artillery group with
- Artillery reconnaissance element
- Cannon battalion (attached) with 18 towed 2A65 152-mm howitzers
- MRL battalion with 18 Tornado-Gs
- 2 256M1 (SA-19) air defense vehicles
- Organic sustainment

AIR

Joint Air Wing
- Rotary-wing attack aviation in country
- Unmanned systems: Forpost and Orlan-10

Airborne Forces
- Air assault battalion
 - 32 BMD-4M IFVs
 - 2 BTR-MDM APCs
 - Organic sustainment

Spetsnaz element
- 3 companies
- 1 communications company
- 7 BTR-80 APCs
- 3 Tigrs (light jeeps)
- 3 Tayfun-Us (MRAPs)

SUPPORT

Other combat support and sustainment elements
- Engineer company
- MTO battalion
 - 408 vehicles
 - 1,190 tons of dry supplies
 - 680 tons of liquids
 - Additional food, fuel, and ammunition
- Electronic warfare detachment

Total personnel 4,666
Combat vehicles 211
Support vehicles ~500
Helicopters 20

NOTE: MRAP = mine-resistant, ambush-protected (vehicle).
General steps of the joint task force’s movement by air and sea to Syria, as well as en route to the objective area at Palmyra

Two waves of deployment: VDV and Spetsnaz units completely by air, followed by major combat forces arriving by both sea (equipment) and air (personnel).

Additional deployment activities not shown include the following:
- Task organization (generating and assembling the joint task force)
- Reception, staging, onward movement, and integration preparation prior to unit arrivals
- Marshaling area preparation prior to unit arrivals

Readiness of units to deploy once notice to move is received may delay deployment initiation. Less risk of delay for VDV and Spetsnaz units.

Heavy combat and support equipment, some class supplies
- Load on railcars
- Transit to and unload at SPOE
- Load on transport ships
- Transit to Syrian SPOD(s)
- Unload at SPOD(s)
- Road march to marshaling area
- Tactical movement to objective area
- Road march to TAA
- Road march to Tiyas
- Acclimation training and vehicle prep
Figure 4.4
Syria Scenario Airlift Assumptions

Assumption set 1 (initial ground force deployment)
- VDV and Spetsnaz move personnel, equipment, and some class supplies by air.
- Loading aircraft at APOE takes 1 day.
- Airlift for VDV, Spetsnaz, and aviation assets and personnel uses Khmeimim Air Base only as APOD, with estimated maximum 4 aircraft on the ground at a time and 24-hour operations.
- Turkey allows overflight.

Closure time of initial wave (VDV and Spetsnaz equipment and personnel): 3–4 days after unit is ready to deploy

<table>
<thead>
<tr>
<th>Assets to Lift</th>
<th>Equipment*</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDV sorties</td>
<td>12 Il-76s or 5 An-124s</td>
<td>3 large or 7 small transport aircraft</td>
</tr>
<tr>
<td>Spetsnaz sorties</td>
<td>5 Il-76s or 2 An-124s</td>
<td>2 large or 5 small transport aircraft</td>
</tr>
<tr>
<td>Sortie totals</td>
<td>17 Il-76s or 7 An-124s</td>
<td>5 large or 11 small troop transport equivalents</td>
</tr>
<tr>
<td>% of available fleet**</td>
<td>28% of Il-76s 117% of An-124s</td>
<td>Not relevant: Availability for personnel not a limiting factor***</td>
</tr>
</tbody>
</table>

* Sortie calculations are based on weight and do not include class supplies. Class supplies and loading factors increase the number of sorties required.
** Assumes 60 of 110 Il-76s or 6 of 9 An-124s are available.
*** Russia has used civilian and other government aircraft to transport troops to Syria, in addition to its own military assets. Availability of transport for personnel is not as limiting a factor as it is for heavy lift assets

Assumption set 2 (follow-on ground force deployment)
- Follow-on units’ equipment and some class supplies move by sea. All personnel and some class supplies move by air.
- Loading aircraft at APOE takes 1 day.
- Airlift for 27th MR Brigade (-) and support unit personnel uses Latakia Air Base only as APOD, with estimated maximum 4 aircraft on the ground at a time.
- Turkey allows overflight.

Closure time of initial wave (VDV and Spetsnaz equipment and personnel): 3–4 days after unit is ready to deploy

<table>
<thead>
<tr>
<th>Assets to Lift</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>27th MR Brigade (-) sorties</td>
<td>24 large troop transport aircraft (Il-76 equivalent) or 63 small (An-24 equivalent) troop transport aircraft</td>
</tr>
<tr>
<td>% of available fleet</td>
<td>Not relevant: Availability for personnel not a limiting factor</td>
</tr>
</tbody>
</table>
Assumption set 1 (sea asset demand in second wave)
Second-wave forces—27th MR Brigade (−) and support units—transport all equipment and some class supplies by sea. Northern and Baltic fleets have diverted transport assets to assist. Deployment includes both organic and nonmilitary cargo vessels, particularly roll-on/roll-off ships.

<table>
<thead>
<tr>
<th>Total Cargo</th>
<th>808 vehicles, class supplies</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPOE</td>
<td>Novorosleseksport</td>
</tr>
<tr>
<td>Sorties*</td>
<td>~30 Tapirs/Alligators or ~60 Ropuchas or 3–4 nonmilitary vessels</td>
</tr>
<tr>
<td>% of available assets*</td>
<td>1,000% of Tapirs/Alligators, 857% of Ropuchas; less stressing for nonmilitary assets**</td>
</tr>
</tbody>
</table>

* Assumes military vessels are not used for class supplies; using nonmilitary vessels for this purpose in parallel would not be a time stress factor.

** Assumes that 3 or 4 total Tapirs/Alligators and 7 of 15 Ropuchas are available.

Assumption set 2 (closure times of second wave)
- Rail unloading at SPOE takes 1 day for initial arrival.
- Military vessels can travel at 18 knots; nonmilitary at 10 knots.
- Both Latakia and Tartus SPODs are used to alleviate backup. All deployment ports can accommodate 4 medium or 2 large roll-on/roll-off vessels at a time.

** Total round-trip steam time (including loading and unloading)**

| Military vessels used for vehicles; nonmilitary vessels used for class supplies | 32+ days (4 round trips/vessel) |
| Nonmilitary vessels used for vehicles and class supplies | 7+ days |
Figure 4.6
Syria Scenario Ground Movement Assumptions

Administrative Movement to Tiyas TAA

<table>
<thead>
<tr>
<th>Convoy Route</th>
<th>Khmeimim to Tiyas (260 km)</th>
<th>Tartus to Tiyas (195 km)</th>
<th>Latakia to Tiyas (277 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave</td>
<td>VDV+ Spetsnaz</td>
<td>27th MR Brigade (-) + support</td>
<td></td>
</tr>
<tr>
<td>Vehicles</td>
<td>68</td>
<td>808</td>
<td></td>
</tr>
<tr>
<td>Column length* (km)</td>
<td>4.0</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td>Completion time (hours)</td>
<td>6.6</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>Assumptions</td>
<td>50 m vehicle spacing at 50 km/h; 20% time spent stopped for rest/maintenance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tactical Movement to Tiyas TAA

<table>
<thead>
<tr>
<th>Convoy Route</th>
<th>VDV + Spetsnaz</th>
<th>27th MR Brigade (-) + support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles</td>
<td>68</td>
<td>808</td>
</tr>
<tr>
<td>Column length* (km)</td>
<td>6.1</td>
<td>72.7</td>
</tr>
<tr>
<td>Completion time (hours)</td>
<td>2.8</td>
<td>5.0</td>
</tr>
<tr>
<td>Assumptions</td>
<td>75 m vehicle spacing at 30 km/hr; 20% time spent stopped for rest/maintenance/security</td>
<td></td>
</tr>
</tbody>
</table>

Assumption set 1
- Unopposed, faster administrative ground movement to Tiyas TAA.
- No anticipated terrain or weather delays for ground or air units.
- Requires preestablished forward logistics base at Tiyas Airfield (T-4).

Assumption set 2
- VDV/Spetsnaz move prior to second-wave force to establish reconnaissance and other preparatory activities in Tiyas.

Assumption set 1
- Deliberate, slower tactical ground movement from Tiyas to Palmyra.
- No anticipated terrain or weather delays for ground or air units.

Assumption set 2
- VDV/Spetsnaz move prior to second-wave force to establish reconnaissance and other preparatory activities in Palmyra.

* Assumes formation along single road. Parallel road to Tiyas would cut time, decrease column length. Other options are stagger and diamond techniques if road width allows.

Delays may be caused by harassment, attacks, weather, terrain, movement at night, or vehicle breakdowns (more likely if post-sealift vehicle maintenance is sacrificed to expedite onward movement).

Key Points from the Syria Scenario

Even with a fairly robust basing system and existing forces in theater, deployment from Russia into theater and then into combat proves challenging. Airlifting forces into Russian bases on Syrian soil is fairly easy, if time-consuming. Dropping those forces near the objective area from aircraft would be a viable alternative, but airdropped forces would have less available combat power than forces deployed by sea and air into ports of debarkation, assembled, and moved forward over ground.
In this *fur* scenario, the Venezuelan government requests Russian assistance in putting down increasingly violent protests in Caracas, and Venezuela is on the verge of collapse. Russia deploys a joint task force of 7,000 personnel in the form of a motorized infantry brigade and a light naval squadron. The primary threats to the task force are armed gangs and large civilian protests that might include armed instigators. Figures 5.1–5.6 show, respectively, the deployment distance, available Russian forces, movement plan, airlift assumptions, sealift assumptions, and ground movement assumptions.

Figure 5.1
Venezuela Scenario Deployment Range

- **BORDER** ➔ Adjacent to Russian border
- **NEAR** ➔ 1 country removed from border
- **FAR** ➔ 2 or more countries removed from border
Figure 5.2
Russian Forces in the Venezuela Scenario

INFRANTRY
- 75 BTR-82A APCs
- 6 BRDM-2 reconnaissance vehicles
- 16 2B9 Vasilek mortars
- 2 SA-10 batteries + support
- Airfield logistics battalion

NAVAL
- 1 guided missile cruiser
- 1 guided missile frigate
- 1 seagoing rescue tug
- Material-technical support point
- Naval logistical repair battalion

SUPPORT
- 1 engineer battalion with 168 support vehicles
- 2 UAV companies with 4 Granat-1s, 26 Zastavas, and 5 Orlan-10s
- Camcopter Shybel-100

FDV (AIRBORNE)
- 1 airborne battalion
- 12 BMD-4M IFVs
- 6 BTR-MDM APCs
- 3 259 Nona-S mortars
- 3 BTR-ZD APCs
- 6 support vehicles

SPECIAL PARAMILITARY POLICE
- 1 Spetsnaz detachment
- 10 BTR-80 APCs
- 4 Tigrs (light jeeps)
- 4 Taifun MRAPs

SPETSNAZ
- 1 Spetsnaz detachment
- 25 BTR-80 APCs
- 10 Taifun MRAPs
- 10 Tigrs (light jeeps)
- 25 Ural-4320 trucks

NAVAL INFANTRY
- 0.5 battalions of Naval Infantry
- 10 BTR-82 APCs
- 4 259 Nona-S mortars

OMON
- 1 OMON detachment
- 25 BTR-80 APCs
- 10 Taifun MRAPs
- 10 Tigrs (light jeeps)
- 25 Ural-4320 trucks

Total personnel: 7,000
- Combat vehicles: 194
- Support vehicles: 203
- Helicopters: 3

Justification: Light, wheeled force with standardized equipment for deployment at global range in a dense urban environment.
Figure 5.3
Venezuela Scenario Movement Plan

General steps of the joint task force’s movement by air and sea to Venezuela, as well as en route to the objective area at Caracas

Deployment occurs in two waves: VDV and Spetsnaz units completely by air, followed by major combat forces arriving by both sea (equipment) and air (personnel)

Additional deployment activities not shown include the following:
- Task organization (generating and assembling the joint task force)
- Reception, staging, onward movement, and integration preparation prior to unit arrivals
- Marshaling area preparation prior to unit arrivals

Readiness of units to deploy once notice to move is received may delay deployment initiation. Less risk of delay for VDV and Spetsnaz units.

Combat order released

Unit selection

Units prepare to deploy

Ground
Units move from home station to APOE

Air
Load on aircraft at APOE
Transit to La Guaira APOD
Unload at APOD

Movement to port

Sea
Load on transport ships
Transit to La Guaira SPOD
Unload at SPOD

Rail
Load on railcars
Transit to and unload at SPOE

Road march to Caracas

Tactical unit movement to posts

Ground

Ground

Ground
Assumption set 1 (air asset demand in initial wave)
Airborne BTG, Spetsnaz, and Naval Infantry move personnel, equipment, and some class supplies by air. The major impact on air asset demand is the leg from Casablanca to Venezuela; long range reduces the amount of cargo that the aircraft can carry.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Platform</th>
<th>Max. cargo at 6,600 km (metric tons)</th>
<th>Airborne BTG sorties*</th>
<th>Special operations forces sorties*</th>
<th>Naval Infantry sorties*</th>
<th>% of available fleet</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-76</td>
<td>26</td>
<td>16.3</td>
<td>10.5</td>
<td>7.2</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>An-124</td>
<td>95</td>
<td>4.4</td>
<td>2.9</td>
<td>2.0</td>
<td>155</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform</th>
<th>Sortie requirements for personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large aircraft</td>
<td>4.6</td>
</tr>
<tr>
<td>Small aircraft</td>
<td>13.0</td>
</tr>
</tbody>
</table>

*Sortie calculations are based on weight and do not include class supplies. Class supplies and loading factors increase the number of sorties required.

Assumption set 2 (affecting closure times of initial wave)
- Overflight and basing access are critical because in-air refueling capabilities are inadequate.
- Initial load at APOE takes 1 day.
- All fly the same route at the same time (for simplicity).
- Each airfield in leg has maximum 4 aircraft on the ground at a time (~15-hour clearance at each leg for refueling if using 6 An-124s and 12 Il-76s for equipment, large aircraft for personnel).

<table>
<thead>
<tr>
<th>Distance</th>
<th>Flight Time</th>
<th>Refueling Stops</th>
<th>Closure Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,811 km</td>
<td>5-hour</td>
<td>1</td>
<td>2.8 days</td>
</tr>
<tr>
<td>8,315 km</td>
<td>10-hour</td>
<td>2</td>
<td>3.6 days</td>
</tr>
<tr>
<td>19,564 km</td>
<td>26-hour</td>
<td>4</td>
<td>5.6 days</td>
</tr>
</tbody>
</table>

Total: (APOE + flight + stop + APOD) to close
Venezuela Scenario Sealift Assumptions

Assumption set 1 (affecting sea asset demand in second wave)
- MR BTGs and OMON units send all equipment and class supplies by sea.
- Personnel travel by air using nonmilitary transport.
- Organic support vessels (Tapir/Alligator, Ropucha) cannot be used over such long distances. Nonmilitary or commercial may be required; roll-on/roll-off vessels bought for Syria Express (Alexandr Tkachenko and suspected MV Novorossiysk) may be used, but enduring high rates of usage may have degraded their readiness.
- Limiting factor is not space but time to acquire nonmilitary vessels and steam time. Hiring commercial vessels may take several days to weeks, depending on the company.

Assumption set 2 (affecting sea asset closure rates in second wave)
- Novorossiysk and Murmansk ports are preferred as SPOEs. Murmansk determined to be less politically risky in case of denied access to Bosporus Strait.
- Loading at SPOE takes 1 day, unloading at SPOD takes 2 days each.

| Military vessels used for vehicles; nonmilitary vessels used for class supplies | NA |
| Nonmilitary vessels used for vehicles and class supplies | 16–18 days |

Total round-trip steam time (including loading and unloading)

- Murmansk 9,870 km; 16 days
- Novorossiysk 11,230 km; 18 days
Figure 5.6
Venezuela Scenario Ground Movement Assumptions

Tactical Movement to Forward Operating Bases

<table>
<thead>
<tr>
<th>Convoy Route</th>
<th>Area to Forward Operating Base</th>
<th>Maiquetia Marshaling Area to Francisco de Miranda Air Base (24 km)</th>
<th>Maiquetia Marshaling Area to Fort Tiuna (24 km)</th>
<th>Maiquetia Marshaling Area to Francisco de Miranda Air Base (24 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave</td>
<td>Airborne, special operations forces, Naval Infantry</td>
<td>Airborne, special operations forces, Naval Infantry</td>
<td>MR, special paramilitary police</td>
<td>MR, special paramilitary police</td>
</tr>
<tr>
<td>Vehicles*</td>
<td>38</td>
<td>39</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>Column length (km)</td>
<td>3.4</td>
<td>3.5</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Completion time (hours)</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

* Assumes weight of effort split evenly between both.

Assumption set 1
- Deliberate, slower tactical ground movement
- 75m vehicle spacing, traveling at 30km/hr, 20% of time spent halted for rest/maintenance/security measures

Assumption set 2
VDV/Spetsnaz move prior to second-wave force to establish reconnaissance and other preparatory activities in forward operating bases.

Potential delays to optimal unit travel times may be caused by harassment or attacks, weather, terrain, movement at night as opposed to day, or vehicle breakdowns. The latter is more likely if units’ deployment to this stage sacrificed post-sealift maintenance on vehicles to expedite onward movement.

Key Points from the Venezuela Scenario

This is the longest notional scenario that we considered. Air movement requires two interim stops for each sortie, while sealift would require at least 16 days of sailing time. Both these movements are highly dependent on in-transit movement authorities and refueling options and, therefore, diplomatic largesse. The absence of a network of alliances and international bases significantly increases the likelihood that this deployment would suffer setbacks or delays. And the lack of long-range sustainment would greatly complicate Russia’s ability to keep its ground forces fueled, fed, watered, and sufficiently supplied with ammunition over time, particularly as Caracas suffers from acute shortages of various classes of supplies.
We developed and studied—but did not analyze—this notional scenario as part of our collective assessment. This is a large-scale Russian military invasion of Ukraine involving approximately 130,000 Russian joint force personnel, centering on an RGF task force of approximately 83,000 soldiers built around the 20th Combined Arms Army and the 8th Combined Arms Army.

Figures 6.1–6.6 show, respectively, the deployment distance, available Russian forces, operational phase 1, operational phase 2, timeline of units ready to deploy, and rail assumptions.

Figure 6.1
Ukraine Scenario Deployment Range

BORDER Adjacent to Russian border

NEAR 1 country removed from border

FAR 2 or more countries removed from border
Figure 6.2
Russian Forces in the Ukraine Scenario

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total personnel</td>
<td>83,000 (+45,000 in reserve)</td>
</tr>
<tr>
<td>Tanks</td>
<td>1,733</td>
</tr>
<tr>
<td>APCs/IFVs</td>
<td>5,457</td>
</tr>
<tr>
<td>Artillery</td>
<td>1,531</td>
</tr>
<tr>
<td>MRLs</td>
<td>364</td>
</tr>
<tr>
<td>SAMs</td>
<td>370</td>
</tr>
<tr>
<td>Anti-aircraft guns</td>
<td>107</td>
</tr>
<tr>
<td>Anti-tank guns</td>
<td>174</td>
</tr>
</tbody>
</table>

NOTE: Reflects authorized table of organization and equipment for units; Russia may not deploy all equipment.
• Western Military District units assemble near Belgorod.
• Southern Military District units assemble near Taganrog and Novocherkassk.
• Initial special operations and Spetsnaz units inserted.

Russian units operate in their overt and traditional capacity, with their traditional logistics requirements.
• Will be too large and complex to be a covert “hybrid” conflict
• Some hybrid activity anticipated

Legend:
- Land movement
- Russian asset
- Assembly area
Figure 6.4
Ukraine Scenario, Operational Phase 2

- Seize Kharkiv and Luhansk oblasts.
- Seize Donetsk and eastern Dnepropetrovsk oblasts.
- 1st Tank Army, 49th Combined Arms Army, 90th Tank Division, and Central and Eastern military district BTGs remain in reserve.
Figure 6.5
Timeline of Units Ready to Deploy in the Ukraine Scenario

<table>
<thead>
<tr>
<th>Units</th>
<th>Ready to deploy within 10 days</th>
<th>Ready to deploy in 10–20 days</th>
<th>Ready to deploy in 30 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Military District</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x8</td>
<td>x4</td>
<td>x2</td>
<td>x2</td>
</tr>
<tr>
<td>x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Military District</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td></td>
<td></td>
<td>x3</td>
</tr>
<tr>
<td>Eastern Military District</td>
<td></td>
<td></td>
<td>x4</td>
</tr>
<tr>
<td>Total combat vehicles</td>
<td>4,155 tracked</td>
<td>2,393 tracked</td>
<td>506 tracked</td>
</tr>
<tr>
<td></td>
<td>1,600 wheeled</td>
<td>983 wheeled</td>
<td>243 wheeled</td>
</tr>
</tbody>
</table>

- Operations do not have a rolling start. Russia builds forces along the border with Ukraine before entering. Because Russia chooses the time/place of the operation, it can deploy half of its initial combat force from the Western and Southern military districts within 10 days of order and the other half within 20 days of order. Phased deployment will allow local units to train for combat missions along the border with Ukraine before entering.
- Due to mixed manning in Russian units, most will not deploy in the same wave (e.g., 1–2 regiments in a division for wave 1, the remainder in wave 2), with a few exceptions for high-readiness units like the VDV, which deploy at once.
Figure 6.6
Ukraine Scenario Rail Assumptions

Assumption set 1 (rail asset demand)
The military is given priority order for railcars and trains per Resolution No. 761 of October 7, 1998.

<table>
<thead>
<tr>
<th>Readiness Wave</th>
<th>Military District</th>
<th>Railcars/Trains (all vehicles)</th>
<th>Railcars/Trains (tracked vehicles only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within 10 days</td>
<td>Western</td>
<td>2,411 / 43</td>
<td>1,963 / 35</td>
</tr>
<tr>
<td></td>
<td>Southern</td>
<td>811 / 15</td>
<td>573 / 11</td>
</tr>
<tr>
<td></td>
<td>Central</td>
<td>402 / 8</td>
<td>257 / 5</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>3,624 / 66</td>
<td>2,859 / 51</td>
</tr>
<tr>
<td>Within 10–20 days</td>
<td>Western</td>
<td>1,388 / 25</td>
<td>1,003 / 18</td>
</tr>
<tr>
<td></td>
<td>Southern</td>
<td>910 / 16</td>
<td>707 / 13</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>2,298 / 41</td>
<td>1,710 / 31</td>
</tr>
<tr>
<td>Within 30 days</td>
<td>Central</td>
<td>292 / 6</td>
<td>203 / 4</td>
</tr>
<tr>
<td></td>
<td>Southern</td>
<td>205 / 4</td>
<td>159 / 4</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>497 / 10</td>
<td>362 / 8</td>
</tr>
</tbody>
</table>

Calculations consider combat vehicles only. Support vehicles (which often number at least 1:1 in force packages), class supplies, and personnel would double or triple these estimates. Many assets can and should be road-marched to alleviate congestion and railcar shortages, however.

Assumption set 2 (rail closure)
- Western Military District has the densest rail network in the country, but only two routes lead to Belgorod assembly area, causing congestion.
- Southern Military District rail network is less dense, but train density will be lower than in Western Military District.
- Central and Eastern military districts’ rail networks are least dense and travel times are much greater, but train density will be low.

Key Points from the Ukraine Scenario

This is a large-scale operation that would take weeks, if not months, to fully develop and execute. There is little chance that Russia would be able to achieve operational surprise without undertaking significant hybrid warfare activities and warning observers. However, in many ways, this is a deployment sweet spot for the RGF: It is adjacent to Russia’s Western and Southern military districts, where the core of its assets are located; support can travel across relatively flat terrain; it requires no transit across or around a hostile state; and it depends on relatively few joint transportation assets. If this is an ideal case, then the timeline should help inform future analyses of prospective Russian combat operations in Eastern Europe.
The following are key sources that informed our scenario development and analysis, as well as our review of 15 historical deployments of Soviet and Russian ground forces since 1945. See the companion report, *Russia's Limit of Advance: Analysis of Russian Ground Force Deployment Capabilities and Limitations* (available at www.rand.org/pubs/research_reports/RR2563), for detailed findings from our analysis of these notional and historical deployments.

Bibliography

The following are key sources that informed our scenario development and analysis, as well as our review of 15 historical deployments of Soviet and Russian ground forces since 1945. See the companion report, *Russia's Limit of Advance: Analysis of Russian Ground Force Deployment Capabilities and Limitations* (available at www.rand.org/pubs/research_reports/RR2563), for detailed findings from our analysis of these notional and historical deployments.

Notional Scenarios

Background and Context for the Notional Scenarios

“Военнослужащие по призыву не будут участвовать в боевых действиях” [“Conscripts Will Not Serve in Combat Roles"], RIA Novosti, February 14, 2013. As of July 22, 2019:
https://ria.ru/defense_safety/20130214/922957676.html

Di Cocco, Alexandra, “Kazakhstan’s Niche in China’s Belt and Road Initiative,” blog post, Atlantic Council, May 23, 2017. As of July 22, 2019:

https://www.ft.com/content/38103280-72ef-11e7-aca6-c6bd07df1a3c

https://news.usni.org/2016/05/09/opinion-russian-tank-deal-with-nicaragua-back-to-the-future-moment-for-u-s

Fiegel, Brenda, “Growing Military Relations Between Nicaragua and Russia,” Small Wars Journal, December 5, 2014. As of July 22, 2019:
https://smallwarsjournal.com/jrnl/art/growing-military-relations-between-nicaragua-and-russia

Frolovskiy, Dmitry, “Kazakhstan’s China Choice,” The Diplomat, July 6, 2016. As of July 22, 2019:
http://thediplomat.com/2016/07/kazakhstans-china-choice

Haines, John R., “Everything Old Is New Again: Russia Returns to Nicaragua,” Foreign Policy Research Institute, July 22, 2016. As of July 22, 2019:

“ISIS in Afghanistan,” video clip, Frontline, Season 33, Episode 8, November 17, 2015. As of July 22, 2019:
http://www.pbs.org/video/2365608927

Lavrov, Anton, “Towards a Professional Army,” Moscow Defense Brief, No. 4 (48), April 2015. As of July 22, 2019:

McDermott, Roger N., Russia’s Strategic Mobility: Supporting ‘Hard Power’ to 2020? Stockholm, Sweden: FOI, FOI-R-3587-SE, April 2013. As of July 22, 2019:
https://www.foi.se/rest-api/report/FOI-R--3587--SE

Oboznik, “Задачи трубопроводных войск на территории Сирии” [“Tasks of the Pipeline Troops in Syria”], undated. As of July 22, 2019:
http://www.oboznik.ru/?p=52434#more-52434

Parraga, Marianna, and Alexandra Ulmer, “Special Report: Vladimir’s Venezuela—Leveraging Loans to Caracas, Moscow Snaps Up Oil Assets,” Reuters, August 11, 2017. As of July 22, 2019:

Air Order of Battle

Sea Order of Battle

Rail Transport of Forces and Equipment

Globaltrans, “Industry Overview,” webpage, last updated July 25, 2019. As of July 25, 2019:
http://www.globaltrans.com/about-us/rail-industry-market/industry-overview

https://jamestown.org/program/end-line-trans-siberian-railroad

Kovalev Pavel, “Западные страшилки или мифы о российских вагонах” [“Western Horror Stories and Myths About Russian Military Trains”], Военно-политическое обозрение [Military and Political Review], August 10, 2017. As of July 22, 2019:
http://www.belvpo.com/ru/85537.html

Lavrov, Anton, “Russian Railway Forces,” Moscow Defense Brief, Vol. 3 (59), 2017

https://www.slideshare.net/alexandergoloviznin/ppt-goloviznin-201402

Murray, Bruce, Russian Railway Reform Programme, working paper, London: European Bank for Reconstruction and Development, June 2014.

Shepard, Wade, “2 Days from China to Europe by Rail? Russia Going for High-Speed Cargo Trains,” Forbes, January 14, 2017. As of July 22, 2019:
https://www.forbes.com/sites/wadeshepard/2017/01/14/2-days-from-china-to-europe-by-rail-russia-going-for-high-speed-cargo-trains/#5493a0de54af

Historical Case Studies

Background and Context for Historical Deployments

Adomeit, Hannes, Soviet Crisis Prevention and Management: Why and When Do the Soviet Leaders Take Risks? Santa Monica, Calif.: RAND Corporation, OPS-008, October 1986. As of July 22, 2019:
https://www.rand.org/pubs/occasional_papers-soviet/OPS008.html

Dowling, Timothy C., ed., Russia at War: From the Mongol Conquest to Afghanistan, Chechnya, and Beyond, Santa Barbara, Calif.: ABC-CLIO, 1979.

Historical Case Study: Syrian Civil War

Historical Case Study: Soviet-Afghan War

By the time it invaded Crimea in 2014, Russia seemed to have regained a significant portion of the military power it lost after the fall of the Soviet Union, reemerging as a perceived threat to democracy. But how capable is Russia of deploying and sustaining ground combat forces farther from its borders?

An analysis of notional ground deployment scenarios constructed from real-world, open-source data, along with a review of historical cases spanning the Soviet and post-Soviet eras, reveals strengths and limitations of Russia’s military infrastructure. In fact, despite Russia’s status as a reemerging global military power, its ground force deployment capability is strong only near its western border and within range of its air defenses. Although it poses a credible threat to Eastern Europe, its ability to deploy ground combat units drops off sharply as geographic distance increases. Limited forces and transportation assets, a lack of international support, and an insufficient ability to sustain its deployed forces also prevent Russia from regaining its Soviet-era deployment capacity.

This report presents additional detail on the notional scenarios that informed the analysis of Russian ground force deployment capabilities. The scenarios range from border deployments to long-range overseas deployments and were designed to test the limits of Russia’s capacity to deploy forces and equipment. They were not necessarily chosen to reflect the probability or political feasibility of an actual Russian deployment.