This PDF document was made available from www.rand.org as a public service of the RAND Corporation.

The RAND Corporation is a nonprofit research organization providing objective analysis and effective solutions that address the challenges facing the public and private sectors around the world.

Support RAND

Browse Books & Publications
Make a charitable contribution

For More Information

Visit RAND at www.rand.org
Explore RAND Europe
View document details

Limited Electronic Distribution Rights
This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use.
This product is part of the RAND Corporation technical report series. Reports may include research findings on a specific topic that is limited in scope; present discussions of the methodology employed in research; provide literature reviews, survey instruments, modeling exercises, guidelines for practitioners and research professionals, and supporting documentation; or deliver preliminary findings. All RAND reports undergo rigorous peer review to ensure that they meet high standards for research quality and objectivity.
The PRISM Model

Evidence on Model Hierarchy and Parameter Values

Charlene Rohr

Prepared for the UK Department for Transport
The RAND Corporation is a nonprofit research organization providing objective analysis and effective solutions that address the challenges facing the public and private sectors around the world. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors.

RAND is a registered trademark.

© Copyright 2007 RAND Corporation

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND.

Published 2007 by the RAND Corporation
1776 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138
1200 South Hayes Street, Arlington, VA 22202-5050
4570 Fifth Avenue, Suite 600, Pittsburgh, PA 15213-2665
Westbrook Centre, Milton Road, Cambridge CB4 1YG, United Kingdom
RAND URL: http://www.rand.org/
RAND Europe URL: http://www.rand.org/randeuropa
To order RAND documents or to obtain additional information, contact
Distribution Services: Telephone: (310) 451-7002;
Fax: (310) 451-6915; Email: order@rand.org

The research described in this report was prepared for the UK Department for Transport.
The UK Department for Transport (DfT) provides detailed guidance on the appraisal of transport projects and wider advice on scoping and carrying out transport studies through its WebTAG website (www.webtag.org.uk). Part of this advice concerns development of transport models which contain the full range of important demand responses, i.e. trip frequency, mode choice, destination choice, time period choice and route choice, called ‘Variable Demand Models’, for the evaluation of large highway and public transport infrastructure schemes. For development of this advice, the DfT sought evidence about choice hierarchies and parameter values from existing transport demand models, specifically those that had been subject to rigorous calibration and validation procedures. The Policy Responsive Integrated Strategy Model of the West Midlands (PRISM) developed by RAND Europe and Mott MacDonald met these requirements and therefore RAND Europe was commissioned to undertake this small study to report the model choice hierarchies and model parameter values from the PRISM model.

The PRISM model system is a variable demand multi-modal transport model developed for the West Midlands region by RAND Europe and Mott MacDonald. It consists of detailed network models covering the highway and public transport (PT) systems, which are linked to a disaggregate model of travel demand. The demand model reflects a number of traveller responses in a number of interacting modules, including car ownership, PT travel pass ownership, tour frequency, destination choice, mode choice and time of day choice. All of these models, except for the car ownership model and the trip frequency model for business and non-home-based travel, were estimated from local data. Because the mode and destination models have been estimated from local data, the outputs provide evidence on appropriate model structure, particularly the relative sensitivity of mode and destination choice, which is of particular interest to DfT at this time.

The following table summarises the optimal nesting structures for mode and destination choice identified in the estimation of the PRISM models. The tables also report the resulting model sensitivity parameters, defined as ‘Lambda’ (\(\lambda\)), which identify the relative sensitivity of mode and destination choice responses.
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Tree Structure</th>
<th>θ</th>
<th>Mode Choice λ</th>
<th>Destination Choice λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuting</td>
<td>Multinomial</td>
<td>1</td>
<td>0.020 to 0.050</td>
<td>0.020 to 0.050</td>
</tr>
<tr>
<td>Primary Education</td>
<td>Destination choice below mode choice</td>
<td>0.19</td>
<td>0.008 to 0.027</td>
<td>0.040 to 0.14</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>Destination choice below mode choice</td>
<td>0.47</td>
<td>0.007 to 0.028</td>
<td>0.015 to 0.060</td>
</tr>
<tr>
<td>Tertiary Education</td>
<td>Destination choice below mode choice</td>
<td>0.35</td>
<td>0.010 to 0.035</td>
<td>0.035 to 0.090</td>
</tr>
<tr>
<td>Shopping</td>
<td>Destination choice below mode choice</td>
<td>0.38</td>
<td>0.020 to 0.040</td>
<td>0.050 to 0.100</td>
</tr>
<tr>
<td>Other</td>
<td>Destination choice below mode choice</td>
<td>0.27</td>
<td>0.008 to 0.015</td>
<td>0.030 to 0.050</td>
</tr>
</tbody>
</table>