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Preface 

RAND Europe was commissioned by the Bureau of Transport Statistics (BTS) of 
Transport for NSW to enhance the pivoting procedure used in the application of the 
Sydney Strategic Transport Model (STM). The pivoting procedure combines the forecasts 
from the travel demand models with base matrix information describing base travel 
patterns to provide best-estimate forecasts of the future travel matrices for car and public 
transport modes. 

The STM was designed by Hague Consulting Group (1997). In Stage 1 of model 
development (1999–2000), Hague Consulting Group developed mode-destination and 
frequency models for commuting travel, as well as models of licence ownership and car 
ownership. In addition a forecasting system was developed incorporating these 
components. In Stage 2 of model development (2001–02), RAND Europe, incorporating 
Hague Consulting Group, developed mode and destination and frequency models for the 
remaining home-based purposes, as well as for non-home-based business travel. Then, 
during 2003 and 2004, RAND Europe undertook a detailed validation of the performance 
of the Stage 1 and 2 models. Finally, Halcrow undertook Stage 3 of model development 
(2007), re-estimating the home-work mode-destination models, and at the same time 
developing models of access mode choice to train for home-work travel. 

By 2009, some model parameters dated back to 1999, raising concerns that the model may 
no longer reflect with sufficient accuracy the current behaviour of residents of Sydney. 
Furthermore, changes to the zone structure of the model occurred with the number of 
zones approximately trebling in number and the area of coverage increased to include 
Newcastle and Wollongong. Therefore, the BTS commissioned RAND Europe to re-
estimate the STM models using more recent information on the travel behaviour of 
Sydney residents. 

Following the completion of the re-estimation project, RAND Europe was commissioned 
to undertake three parallel projects to implement the new models, and improve the 
performance of the pivoting process. 

The first project was to implement the new frequency, mode and destination components 
in the STM. For each journey purpose represented in the STM, the frequency, mode and 
destination models are implemented within a single structure referred to as a travel 
demand model. 

The second project was to update the Population Synthesiser used to generate future 
forecasts of the population in the STM study area by segment and zone. In application, the 
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outputs from the Population Synthesiser are used as inputs into the Travel Demand 
models. 

The third project was to assess and enhance the pivoting procedure used in the STM. The 
work to update the pivoting procedure is described in this report. 

This document is intended for a technical audience familiar with transport modelling 
terminology. 

RAND Europe is an independent not-for-profit policy research organisation that aims to 
improve policy and decision making in the public interest, through research and analysis. 
RAND Europe’s clients include European governments, institutions, NGOs and firms 
with a need for rigorous, independent, multidisciplinary analysis. This report has been 
peer-reviewed in accordance with RAND’s quality assurance standards. 

For more information about RAND Europe or this document, please contact James Fox: 

RAND Europe 
Westbrook Centre 
Milton Road 
Cambridge CB4 1YG 
United Kingdom 
Tel. +44 (1223) 353 329 
jfox@rand.org 

mailto:jfox@rand.org
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CHAPTER 1 Introduction 

1.1 Objective of work 

The overall objectives of this work were to assess the performance of the pivoting 
procedure originally used in the Sydney Strategic Model (STM), and then to go on to 
specify enhancements to improve the operation of the procedure. In the brief for this work, 
the Bureau of Transport Statistics (BTS) stated that it were seeking an enhanced pivoting 
procedure that had the following features: 

 is transparent, i.e. the working of the procedure should be clear to users of the 
STM 

 does not require user intervention for each application 
 retains the implied growth forecasts (as much as possible) from the STM at an 

appropriate geographic level, while accepting that there will be differences at the 
(origin-destination) cell basis 

 can be applied to zone to zone forecasts 
 can be applied to station to station forecasts 
 can be applied to sparse (e.g. Household Travel Survey) matrices 
 can be applied to relatively full (e.g. journey to work and rail operator station to 

station) matrices 

1.2 Original pivoting process 

This section describes the pivoting process used in the STM before the work to enhance 
the process was begun. 

In forecasting travel demand it is fairly common to base future-year forecasts on an 
accurately known pattern of base-year observed travel flows defined in the base matrices. 
By focusing the modelling effort on predicting changes it is possible to make significant 
reductions in the expected forecasting error. Following Manheim (1979), the process of 
taking a fixed base point and making forecasts relative to that is called pivoting. 

The pivoting approach used in the STM is the ‘eight-case method’, and was taken from 
the definition of the eight-case method given in Daly, Fox and Tuinenga (2005). The 
eight-case method implements factor pivoting, where the ratio of future and base demand 
model predictions is applied to the base matrices, as the default approach. Factor pivoting 
is applied for what is termed ‘normal growth’. However, the eight-case method also uses 
additive pivoting, where the difference between future and base demand model predictions 
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is applied to the base matrix for ‘extreme growth’ cases, for example in cases of brownfield 
sites where there is no travel demand in the base year. The pivoting method is carried out 
at matrix cell level and so can be termed cell factor pivoting. That is, for a specific origin, 
destination, mode and purpose, adjustments are made relative to the corresponding cell in 
a base matrix. 

Table 1 sets out how the predicted matrix P is obtained from the cell factor pivoting 
process as a function of the: 

 base matrix B 

 ‘synthetic’ base Sb – base year output from the demand models before pivoting 

 ‘synthetic’ future Sf – future year output from the demand models before pivoting 

Eight specific cases are defined, allowing for situations where one or more of the items are 
0. 

The pivoting procedures have been chosen to optimise, as far as possible, the continuity of 
the process, i.e. to ensure that small changes in the inputs do not lead to large changes in 
the outputs. The ‘switching points’ X1 and X2 between normal and extreme growth, 
defined in Equations (1.1) and (1.2) below, are chosen on the basis of experience to fit 
with this requirement. 

Table 1: Eight pivoting cases 

Case Base 
(B) 

Synthetic 
base (Sb) 

Synthetic 
future 

(Sf) 
Predicted (P) 

1 0 0 0 0 

2 0 0 >0 Sf 

3 0 >0 0 0 

4 0 >0 >0 

Normal 
growth, 
(Sf < X1) 

0 

Extreme 
growth 

(Sf > X1) 
Sf – X1 

5 >0 0 0 B 

6 >0 0 >0 B + Sf 

7 >0 >0 0 0 

8 >0 >0 >0 

Normal 
growth 

(Sf < X2) 
B.Sf /Sb 

Extreme 
growth 

(Sf > X2) 

B.X2 /Sb + 
(Sf – X2) 

where: 

SbkX .21         (1.1) 
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The values used for the cell pivoting process originally used in the STM were k1 = 0.5 and 
k2 = 5, which are the example values given in Daly, Fox and Tuinenga (2005). These values 
for k1 and k2 emerged from practical experience in applying the Dutch National Model. 
Note that with these values for k1 and k2, when Sb/B < 0.1 Equation (1.2) reduces to X2 = 
Sb. 

An issue that arises when working with synthetic trip matrices is that very low numbers of 
trips can be predicted for cells where the predicted probability of choosing that destination 
is very low. Rather than use these small numbers to predict very small numbers of trips, 
any cell where the number of trips is less than 0.001 is taken to be 0. 

The ‘standard case’ is case 8 where none of the items is 0 and growth is ‘normal’ (termed 
case 8n), where the formula is: 

 
Sb
SfBP         (1.3) 

The analysis described in this report was undertaken during 2011, and at that time the 
pivoting process worked with the 2006 zoning system, which has a total of 2690 travel 
zones. Therefore, all analysis undertaken in this project used the 2006 zoning system. A 
new 2011 zoning system will to be developed during 2012 for use with 2011 Census data, 
resulting in minor changes to the travel zones. 

1.3 Structure of remainder of report 

The structure of the remainder of the report is set out as follows. 

In Chapter 2, a set of performance criteria is defined to enable the performance of the 
pivoting process to be assessed. Then in Chapter 3, these criteria are used to assess the 
performance of the original pivoting process, and a number of issues with the performance 
of the original process are highlighted. In order to address these issues, Chapter 4 sets out 
three enhancements designed to improve the performance of the pivoting process. Next, 
Chapter 5 assesses the performance of the enhanced pivoting process, capturing the 
performance improvement that results from each of the three enhancements. Finally, 
Chapter 6 summarises the improvements that have been made to the process. 
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CHAPTER 2 Performance criteria 

Three key performance criteria have been used in this work to assess the performance of 
the pivoting process: 

 measures of base matrix sparsity 
 comparisons of synthetic and predicted growth 
 distributions of demand across the 8 pivoting cases defined in Section 1.2. 

These three measures are defined and discussed in the following three sections. 

2.1 Base matrix sparsity 

To assess the sparsity of the base matrices for each mode, a new sparsity index has been 
defined for use in this project: 

]0B[cells of number
]0Sb[cells of numberndexSparsity I




    (2.1) 

where: number of cells[Sb>0] is the number of cells in Sb (the synthetic matrix) that are 
greater than 0 

number of cells[B>0] is the number of cells in B (the base matrix) that are greater 
than 0 

We would usually expect a sparsity index greater than 1, as cells would only be 0 in Sb 
when it is not possible to travel between the origin and destination by the relevant mode. A 
high sparsity index indicates high sparsity in the base matrix, i.e. a lower proportion of cells 
with observed trips. 

2.2 Comparison of synthetic and predicted growth 

Synthetic growth expresses the growth predicted by the demand model. This is calculated as 
a percentage: 

100*)(
Sb
SbSf 

       (2.2) 

where: Sb is the synthetic base – base year output from the demand models before 
pivoting 
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 Sf is the synthetic future – future year output from the demand models before 
pivoting 

Predicted growth is the growth that is predicted after pivoting. This is calculated as a 
percentage: 

100*)(
B
BP 

       (2.3) 

where: B is the base matrix; 

 P is the predicted demand after pivoting. 

It can be seen that when Equation (2.3) is applied at the individual cell level, synthetic and 
pivoted growth are the same in percentage terms. Thus the ‘standard case’ (case 8n) 
formula ensures that synthetic and predicted growth are consistent at the cell level. 
However, there is no guarantee of consistency at higher levels of aggregation than 
individual cells, because the distribution of base demand is usually different between the 
base matrix B and the synthetic base Sb. The simple example given in Table 2 illustrates 
how synthetic and predicted growth can match at the cell level but differ at the aggregate 
level. 

An important issue when comparing synthetic and predicted growth is sign changes. It is 
possible that for a given mode there can be a difference between the sign of the synthetic 
and pivoted changes. The simple example shown in Table 2 for a single mode with two 
destination zones D1 and D2 illustrates how sign change can occur with the cell factor 
process currently used in the STM. 

Table 2: Sign change example 

 D1 D2 Total 
Sb 10 10 20 
Sf 9 12 21 

(Sf – Sb)/ Sb -10% +20% +5% 
B 15 5 20 
P 13.5 6 19.5 

(P – B) / B -10% +20% -2.5% 

This simple example shows how at the cell level, synthetic and pivoted growth match 
exactly, but that at the total mode level there is a sign change, which follows from the 
different distributions of demand in B and Sb across destination zones. 

2.3 Distribution of demand across the eight cases 

A third approach that has been used to investigate the performance of pivoting in other 
studies1 is to analyse the percentage of cells that fall in each of the different cases. Table 3 
illustrates this approach with an example based closely on real data from another project 
(for a full definition of each case, refer back to Table 1). 

                                                      
1  In particular in analysis of the PRISM model system for the West Midlands region of the UK. Notes 
summarising this analysis were circulated to the PRISM project team but are not publicly available. 
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Table 3: Example distribution across the eight cases 

Case Formula % Cells % of B % of Sb % of Sf % of P 
1 0 5 % 0 % 0 % 0 % 0 % 
2 Sf 0 % 0 % 0 % 0 % 0 % 
3 0 0 % 0 % 0 % 0 % 0 % 
4n 0 80.5 % 0 % 46.0 % 45.0 % 0 % 
4e max(Sf – 5.Sb, 0) 0.5 % 0 % 0.1 % 0.6 % 0.3 % 
5 B 0 % 2.0 % 0 % 0 % 2.0 % 
6 B + Sf 0 % 0 % 0 % 0 % 0 % 
7 0 0 % 0 % 0 % 0 % 0 % 
8n B x Sf / Sb 14.0 % 98.0 % 53.9 % 54.4 % 97.7 % 
8e B x S* / Sb + (Sf – S*) 0 % 0 % 0 % 0 % 0 % 

Two key patterns emerge from this table. First, 97.7% of demand in matrix P is predicted 
by case 8n, which is the standard pivoting formula. Second, 81% of cells have zero values 
for the base matrix but non-zero values for Sb and Sf. 

This example clearly illustrates the issue of sparsity in the base matrix. Nearly half of the 
synthetic demand (46%) occurs in the row corresponding to 4n (B=0, Sb>0, Sf>0) where 
the base matrix is 0. For these cells, changes in the synthetic demand have no impact after 
pivoting, because as per Table 3 the predicted matrix P=0 for case 4n. 

In the simple example given in Table 3, there are no observations in the case 8 extreme 
growth row, but tabulations of this type are also useful in assessing the impact of extreme 
growth on the percentage of total demand. 

If geographical aggregation is used as an approach to overcome sparsity in the base 
matrices, we would expect to see a shift in the distribution of cells away from cases 1–4 to 
corresponding cases 5–8. 

In summary, the key performance measures when looking at the distribution across the 
eight cases are: 

 the percentage of synthetic demand that occurs in cell types 1–4, where the base 
matrix is 0, and in particular the percentage of demand that occurs in case 4n, 
which is typically the most populated of cell types 1–4 and where predicted 
demand is zero 

 of the predicted demand P that occurs within case 8, the proportions that are 
classified as normal (8n) and extreme (8e) 

Other measures may be extracted for particular analyses, for example when analysing 
growth in new development areas where there are no trips in the base year the percentage 
of demand in case 2 is relevant. 
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CHAPTER 3 Performance of original pivoting process 

This chapter assesses the performance of the original process using the performance criteria 
defined in Chapter 2. Section 3.1 describes the four sets of test matrices that BTS has 
supplied to allow assessment of the pivoting process. Both zone to zone matrices and 
station to station matrices have been supplied. The two sets of matrices are distinct in 
characteristics, and so have been assessed separately. Section 3.2 documents analysis of the 
zone to zone matrices, whereas Section 3.3 describes analysis of the station to station 
matrices. The chapter concludes in Section 3.4 with a summary of the issues identified 
with the original pivoting process. 

3.1 Test matrices 

BTS supplied four sets of base matrices to allow the operation of the original pivoting 
process to be analysed. All four sets of matrices have been obtained by running the existing 
version of the STM for a 2006 base year and a 2036 forecast year. It is emphasised that the 
existing version of the STM is not the recently re-estimated version of the model. The 
recently re-estimated version of the model is in the process of being implemented. The test 
matrices have been supplied using the 2006 travel zones system, which has a total of 2690 
zones. 

Table 4: Test matrix sets 

Set Purpose(s) Base matrices Modes Zone system 

1 Home-work Rescaled JTW Car driver, car passenger, 
train, bus and ferry 2690 zones 

2 Home-work Expanded HTS Car driver, car passenger, 
train, bus and ferry 2690 zones 

3 All home-
based  RailCorp Train only 343 stations 

4 All home-
based HTS rail Train only 343 stations 

Matrix set 1 uses 2006 Census journey to work (JTW) data to define the base matrix, 
scaled to match Household Travel Survey (HTS) control totals. Scaling is applied to 
correct for two factors. First, the JTW data are collected on Census day when fewer people 
are on holiday, whereas the HTS control totals are for an average workday. Second, the 
JTW data are believed to include a mix of home-based work and some home-based 
business travel. For both of these reasons, the JTW contains more tours than would be 
implied by compatibility with HTS, on which the STM is based. For each mode of travel, 
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a single scaling factor is defined, which is applied to all cells to ensure compatibility with 
HTS. Matrix set 1 is referred to as simply ‘rescaled JTW’ in this report. 

Matrix set 2 uses the same set of synthetic matrices as matrix set 1, but replaces the base 
matrices with expanded HTS data. The HTS base matrices are significantly sparser than 
the JTW matrices, and so comparison of results between matrix sets 1 and 2 provides a test 
of the impact of sparsity on the pivoting results. Matrix set 2 is also important in 
demonstrating the performance of the original pivoting process, because for purposes other 
than home-based commuting expanded HTS data are used to define the base matrices. 
Matrix set 2 is referred to as simply ‘expanded HTS’ in this report; it should be compatible 
with STM. 

Matrix set 3 uses the rail operator’s (RailCorp) 3.5 hour AM peak matrix as the base 
matrix. This matrix set allows the operation of the pivoting process to be tested at the 
station to station level. The synthetic matrices are generated by summing together rail 
demand for all the home-based purposes, and then applying a factoring approach to adjust 
from an average weekday (the STM definition) to a ‘rail busy day’, which is defined as a 
Tuesday, Wednesday or Thursday in school term time. Thus matrix set 3 contains 
matrices of all-day demand for a rail-busy day. Matrix set 3 provides another test of the 
impact of sparsity on the pivoting process, because the number of stations is significantly 
lower than the number of model zones. This means that the number of cells in the matrix 
is much lower than in a zone to zone matrix, and so the proportion of cells with zero trips 
is expected to be much lower. Matrix set 3 is referred to as simply ‘RailCorp’ in this report. 

Matrix set 4 uses expanded HTS data to generate a rail station to station matrix. The 
matrix generated is substantially sparser that the RailCorp matrix, and so the matrix would 
not be used in actual applications of the STM. However, tests with this matrix have been 
undertaken to test the performance of the pivoting process with different input matrices. 
Matrix set 4 is referred to as simply ‘HTS rail’ in this report. 

3.2 Zonal matrices 

This section documents analysis of the performance of the original pivoting process using 
two sets of zone to zone matrices, namely the rescaled JTW and expanded HTS matrix 
sets. 

3.2.1 Definition of zero trips 
As noted in Chapter 1, in the current pivoting process if the number of synthetic trips 
calculated is less than 0.001 the cell is taken to be 0. Analysis was undertaken using the 
JTW test matrix set to investigate how much demand is lost from the process by using this 
definition of zero trips. Table 5 summarises analysis for car driver that investigates the 
numbers of cells by different ranges of value, and the percentage of demand that lies in 
each range. 
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Table 5: Zero trips definition tests, rescaled JTW test matrix set, car driver 

Value 
range 

Base matrix B Synthetic base Sb Synthetic future Sf Predicted P 
% cells % dem. % cells % dem. % cells % dem. % cells % dem. 

0 96.58% 0.00% 1.39% 0.00% 1.03% 0.00% 86.60% 0.00% 
0–0.001 0.00% 0.00% 33.24% 0.06% 29.19% 0.04% 0.17% 0.00% 

0.001–0.01 0.00% 0.00% 24.21% 0.69% 23.70% 0.49% 5.79% 0.09% 
0.01–0.1 0.00% 0.00% 25.27% 6.70% 26.79% 5.14% 2.49% 0.51% 

0.1–1 0.28% 1.76% 13.35% 29.35% 15.72% 25.27% 1.41% 3.04% 
1 and over 3.13% 98.24% 2.54% 63.20% 3.57% 69.06% 3.54% 96.35% 

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

One-third of synthetic base and almost 30% of synthetic future trips lie in the range 0–
00.1, the range where cells are set to 0. However, these cells account for just 0.06% of 
synthetic base and 0.04% of synthetic future demand. Therefore only tiny fractions of 
synthetic demand are lost though the current zero test assumption. Larger fractions of 
synthetic demand are observed in the 0.001–0.01 range and therefore there is no evidence 
from this analysis to suggest the zero trips cut-off should be increased. 

This analysis was repeated for the car passenger mode, where demand is lower and so we’d 
expect more demand in low value cells. The results are presented in Table 6. 

Table 6: Zero trips definition tests, rescaled JTW test matrix set, car passenger 

Value 
range 

Base matrix B Synthetic base Sb Synthetic future Sf Predicted P 
% cells % dem. % cells % dem. % cells % dem. % cells % dem. 

0 99.55% 0.00% 21.75% 0.00% 21.31% 0.00% 95.51% 0.00% 
0–0.001 0.00% 0.00% 43.75% 0.42% 43.44% 0.37% 0.06% 0.00% 

0.001–0.01 0.00% 0.00% 18.83% 3.89% 19.04% 3.49% 2.91% 0.57% 
0.01–0.1 0.00% 0.00% 12.30% 22.08% 12.54% 20.19% 0.79% 1.86% 

0.1–1 0.05% 3.11% 3.12% 44.02% 3.39% 43.34% 0.30% 7.34% 
1 and over 0.40% 96.89% 0.24% 29.58% 0.28% 32.61% 0.42% 90.24% 

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Higher fractions of cells and demand lie in the 0–0.001 range for car passenger, however 
the cells account for less than 0.5% of synthetic demand. More than 3% of synthetic 
demand lies in the 0.001–0.01 range and therefore it is clear from this analysis that the 
zero test definition should not be increased. 

Similar analysis was undertaken for the rail, ferry and bus modes. The highest fraction of 
synthetic demand lying in the 0–0.001 range was 0.59% in the synthetic base for bus. 

Overall it was judged that the current zero test assumption of 0.001 was reasonable and 
therefore it has been retained in the enhanced pivoting process. 

3.2.2 Base matrix sparsity 
Table 7 gives the sparsity indices for each mode for the rescaled JTW and expanded HTS 
base matrices. 

Table 7: Sparsity indices, rescaled JTW and expanded HTS base matrices 

Mode Rescaled JTW Expanded HTS Ratio 
Car driver 19.1 949.3 49.6 

Car passenger 77.4 3770.6 48.7 
Rail 42.5 2373.5 55.8 

Ferry 9.0 371.4 41.4 
Bus 42.2 1848.9 43.8 

The rescaled JTW base matrices are much sparser than the synthetic base. For car driver, 
the percentage of non-zero cells in B is about one-twentieth of the percentage of non-zero 
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cells in the synthetic base. For car passenger, rail and bus, which have lower shares, the 
rescaled JTW matrices are sparser still. It is not entirely clear why ferry is the least sparse 
mode; probably this relates to a relatively low incidence of ferry in the paths for Sb in the 
wet-rail network, as journeys which use both rail and ferry are considered as rail tours. 

The expanded HTS base matrices are even sparser, with the ratio of the indices indicating 
them to be 50 times sparser than the rescaled JTW. Thus base matrix demand is 
concentrated over a much lower proportion of cells than the synthetic matrices. 

A factor that contributes to these high sparsity indices is the large number of zones in the 
2006 zoning system, which means that there is a total of 7,236,100 (O-D) cells in each 
matrix. Once travel demand has been split by purpose and mode a substantial proportion 
of these cells would be expected to be zero, even in a fully observed base matrix data like 
the JTW. For example, for car driver, the mode with the largest share of travel, just 3.4% 
of cells in the JTW base matrix are non-zero. The synthetic matrices are probabilistic and 
so demand is distributed over all cells for which that mode is available. 

3.2.3 Comparison of synthetic and predicted growth 
Table 8 presents a comparison of synthetic and predicted growth for the rescaled JTW and 
expanded HTS matrix sets. 

Table 8: Synthetic and predicted growth, rescaled JTW and expanded HTS base matrix sets 

Mode Synthetic 
Predicted: 
rescaled 

JTW 

Predicted or 
synthetic 

Predicted: 
expanded 

HTS 

Predicted or 
synthetic 

Car driver 40.5 % 28.4 % 0.70 10.4 % 0.26 
Car pass. 12.6 % 6.5 % 0.52 2.7 % 0.22 

Rail 86.0 % 40.9 % 0.48 29.1 % 0.34 
Ferry 9.4 % 2.4 % 0.26 4.6 % 0.49 
Bus 74.3 % 22.9 % 0.31 14.6 % 0.20 

The predicted growth when pivoting from the rescaled JTW matrices is consistently lower 
than the synthetic growth values. For car driver, predicted growth is 70% of the synthetic; 
for the other modes the predicted growth is 30–50% of the synthetic value. It is 
noteworthy that the ratio of the difference between predicted and synthetic growth varies 
considerably between modes. 

The predicted growth levels when pivoting from the expanded HTS matrices are even 
lower than those observed when pivoting from the rescaled JTW matrices for four of the 
five modes. This results in predicted growth values that are much lower than the synthetic 
growth values. 

Thus a significant issue with the original pivoting process is that the predicted values 
damp2 the growth forecast by the demand models. The effect of this damping is related 
to sparsity in the base matrices, with the worst correspondence between synthetic and 
predicted growth observed for the sparsest matrix set (expanded HTS). However, the 
relationship is less clear at the level of individual modes. For example, car passenger has the 
highest sparsity index for the rescaled JTW and expanded HTS matrix sets, but a closer 

                                                      
2  By damp we mean that we observed lower growth after pivoting relative the synthetic growth.  
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correspondence between synthetic and predicted growth than the three public transport 
modes. 

Further analysis has been undertaken for the rescaled JTW matrix set to understand better 
how synthetic and predicted growth differ. The synthetic and pivoted growth figures were 
compared for the case 8 cells, where Sb, Sf and B are all greater than 0, and in particular for 
case 8 normal (8n) where the standard pivot formula applies: 

Sb
SfBP         (3.1) 

This comparison allows investigation of how well synthetic and predicted growth match 
for the case 8n cells where the standard formula applies. 

Table 9: Synthetic and predicted growth, case 8 cells, rescaled JTW matrix set 

  Synthetic 
growth 

Predicted 
growth Ratio 

Car driver Case 8n cells 22.7 % 15.3 % 0.673 
 Case 8e cells 174.3 % 25.9 % 0.148 
 All cells 40.5 % 28.4 % 0.701 

Car passenger Case 8n cells 4.6 % -7.7 % -1.674 
 Case 8e cells 86.9 % 8.7 % 0.101 
 All cells 12.6 % 6.5 % 0.519 

Rail Case 8n cells 8.0 % 5.3 % 0.656 
 Case 8e cells 114.7 % 14.5 % 0.127 
 All cells 86.0 % 40.9 % 0.476 

Ferry Case 8n cells 0.5 % 0.2 % 0.343 
 Case 8e cells 45.2 % 8.7 % 0.193 
 All cells 9.4 % 2.4 % 0.259 

Bus Case 8n cells 10.3 % -2.6 % -0.253 
 Case 8e cells 85.9 % 9.1 % 0.106 
 All cells 74.3 % 22.9 % 0.309 

These results (Table 9) demonstrate that synthetic growth is lower than pivoted growth for 
case 8n cells, as well as for all cells. So even when the standard formula is applied, the 
pivoting procedure is damping the synthetic growth. This means that differences 
between synthetic and predicted growth are occurring because of differences in the 
distribution of B and Sb over cells. 

The results for case 8n for car passenger and bus also illustrate the sign change problem 
discussed in Section 3.2, where synthetic growth is positive but predicted growth is 
negative. Again, the sign change problem occurs because of differences in the distribution 
of B and Sb over cells. 

3.2.4 Distribution of demand across the eight cases 
Analysis of the distribution of demand across the eight cases used in the pivoting procedure 
has been undertaken for each of the five travel modes in the rescaled JTW and expanded 
HTS matrix sets. Below, the distributions for the car driver mode are presented and 
discussed. Table 10 presents the comparison for car driver for the rescaled JTW matrix set. 
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Table 10: Distribution of car driver demand, rescaled JTW matrix set 

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 0.3 % 0.3 % 

3 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 43.9 % 38.8 % 0.0 % 

4e 0 > 0 > 0 0.0 % 0.9 % 11.0 % 8.6 % 

5 > 0 0 0 0.2 % 0.0 % 0.0 % 0.1 % 

6 > 0 0 > 0 0.0 % 0.0 % 0.0 % 0.0 % 

7 > 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 82.9 % 53.6 % 46.8 % 74.5 % 

8e > 0 > 0 > 0 16.8 % 1.6 % 3.1 % 16.5 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

Almost 83% of the distribution of the base matrix B occurs under case 8n, the standard 
pivot formula. However, 44% of Sb demand, and 39% of Sf demand, occur in case 4n 
where no demand is predicted (P=0). This result further illustrates the impact of base 
matrix sparsity, with close to half of synthetic demand occurring in cells where the base 
matrix is 0. 

Table 11 presents the same comparison for car driver for the expanded HTS matrix set. 

Table 11: Distribution of car driver demand, expanded HTS matrix set 

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 0.3 % 0.4 % 

3 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 95.8 % 84.5 % 0.0 % 

4e 0 > 0 > 0 0.0 % 1.2 % 12.4 % 10.8 % 

5 > 0 0 0 0.1 % 0.0 % 0.0 % 0.1 % 

6 > 0 0 > 0 0.1 % 0.0 % 0.0 % 0.1 % 

7 > 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 28.4 % 1.6 % 1.3 % 23.1 % 

8e > 0 > 0 > 0 71.4 % 1.5 % 1.5 % 65.7 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

With the expanded HTS matrix set, where the base matrices are much sparser, over 95% 
of synthetic demand occurs in cells 1–4 where the base matrix is 0. Most of this demand is 
in case 4n, where no demand is predicted after pivoting. 

A further issue is that for those cells that lie in case 8 (where B, Sb and Sf are all greater 
than 0) the larger contribution to demand comes from the case 8e extreme growth 
formula. In this case, the pivoting formula deliberately predicts lower growth than the 
standard formula to prevent the predicted number of trips exploding when Sf is much 
greater than Sb. However, with these sparse matrices, the trigger point for using the 
extreme growth rule, Sf>X2, is being triggered too frequently: 
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The reason for this result is that with very sparse matrices Sb/B is frequently smaller than 
the ratio k1/k2=0.1, so that X2=Sb, and in most cases Sf>Sb. This result demonstrates that 
an issue with the original pivoting procedure is that the switch point for extreme 
growth X2 does not work well when the base matrices are sparse relative to the 
synthetic matrices. 

3.3 Station matrices 

This section describes analysis of the performance of the existing pivoting process using the 
two sets of station to station matrices, namely the RailCorp and HTS rail matrices. 

3.3.1 Base matrix sparsity 
The sparsity indices for the two station to station base matrices are presented in Table 12. 

Table 12: Sparsity indices, station matrices 

Matrix set Sparsity index 
RailCorp 3.75 
HTS rail 65.55 

The sparsity indices for the RailCorp matrix set, the station to station matrix set used for 
pivoting when the STM is applied, are relatively low. The HTS rail matrices are 
considerably sparser. 

3.3.2 Comparison of synthetic and predicted growth 
Table 13 compares synthetic and predicted growth for the two station to station matrix 
sets. 

Table 13: Comparison of synthetic and pivoted growth, station to station matrices 

Matrix set Synthetic Predicted 
Predicted 

and 
synthetic 

RailCorp 78.2 % 67.7 % 0.87 
HTS rail 78.2 % 46.9 % 0.60 

For the less sparse RailCorp matrix set, predicted and synthetic growth match reasonably 
well. For the sparser HTS rail matrix set, the predicted growth significantly under-predicts 
the synthetic. 

3.3.3 Distribution of demand across the eight cases 
Table 14 presents the distribution of demand across the eight cases for the RailCorp matrix 
set. 
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Table 14: Distribution of rail demand, RailCorp matrix set 

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 25.0 % 24.7 % 

3 0 > 0 0 0.0 % 0.2 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 6.3 % 5.0 % 0.0 % 

4e 0 > 0 > 0 0.0 % 0.5 % 2.9 % 1.5 % 

5 > 0 0 0 1.2 % 0.0 % 0.0 % 0.7 % 

6 > 0 0 > 0 2.3 % 0.0 % 2.9 % 4.3 % 

7 > 0 > 0 0 9.3 % 8.4 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 70.9 % 81.2 % 54.8 % 48.6 % 

8e > 0 > 0 > 0 16.2 % 3.5 % 9.5 % 20.2 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

The percentage of synthetic base demand that occurs in cases 1–4 where the base matrix is 
0 is relatively low at 7.0%. A quarter of synthetic future demand occurs in case 2; however, 
for this case demand is predicted after pivoting (P=Sf) so this growth is not lost. 

Focusing on those cells in case 8, it can be seen that most demand is predicted by case 8n, 
where the standard pivoting formula is applied. 

In summary, for the RailCorp station to station matrix the distribution of demand over the 
eight cases is good, with low percentages of synthetic base matrix demand occurring in 
cases 1–4 where the base matrix is 0, and most case 8 growth being predicted by the 
normal growth regime. 

3.4 Summary of issues with the original pivoting process 

3.4.1 Zonal matrices 
The analysis of the operation of the original pivoting process for the zone to zone matrices 
has identified two closely inter-related issues. First, the base matrices are sparse at the 2690 
zone level: 

 Even for the fully observed JTW matrices, the high number of cells in the matrices 
leads to sparsity. 

 When expanded HTS data are used, the approach used for pivoting all purposes 
apart from commute, the base matrices are very sparse indeed. 

 As a result of this sparsity, substantial fractions of synthetic demand occur in cases 
where the base matrix is 0, and as a consequence a lot of synthetic demand growth 
has no impact on the predicted demands. 

 Even for cells where the base matrix is defined, the mismatch between the mean 
size of non-zero base and synthetic cells means that too much growth is classified 
as ‘extreme’ when the expanded HTS data are used. 

Second, synthetic and predicted growth do not match well: 

 Predicted growth is consistently lower than synthetic. 
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 Even for the cells where the standard pivoting formula applies, differences between 
synthetic and pivoted growth exist. 

 These differences get worse as base matrix sparsity increases. 
 These differences vary between modes. 

To address these issues, three enhancements to the pivoting process were proposed which 
are set out in detail in Chapter 4: 

 pivoting at an aggregate level, which will reduce the sparsity of the base matrices, 
and therefore lead to a better correspondence between synthetic and predicted 
growth 

 revisiting the definition of the switch-point for extreme growth 
 ‘normalising’ at some level, with the normalisation ensuring that synthetic and 

predicted growth match exactly at the level at which the normalisation is applied 
(e.g. total growth for a mode, growth for a mode and origin combination) 

3.4.2 Station matrices 
The original pivoting process performs better for the RailCorp station to station matrix set, 
where the base matrices are significantly less sparse that the zonal matrices. Synthetic and 
predicted growth match fairly well, and the distribution of demand over the eight cases is 
good. The performance is worse for the sparser HTS Rail matrix set, but this matrix set is 
not used when the pivoting process is applied in the STM. 
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CHAPTER 4 Enhancements to the pivoting process 

Given the issues with the performance of the original pivoting process discussed in Chapter 
3, three enhancements to the pivoting process were suggested: pivoting at a more aggregate 
level, revising the formula that controls the switch point between normal and extreme 
growth, and applying some form of normalisation so that the growth in trips predicted by 
the demand models – the synthetic growth – is matched by the growth in trips predicted 
by the pivoting process. Sections 4.1 to 4.3 set out each of these three performance 
improvements in more detail. 

4.1 Zonal aggregation 

The detailed 2690 zone system used in the new STM results in sparse base matrices, even 
for the fully observed Census JTW data. This sparsity results in the original pivoting 
process performing poorly; specifically synthetic growth is systematically under-predicted. 

Therefore, it was proposed to undertake the pivot at a more aggregate zonal level. This 
approach was expected to improve the performance of the pivoting process for two reasons. 
First, after zonal aggregation the percentage of zero cells in the base matrix will be 
significantly lower. This shifts synthetic demand from case 4 normal, where the predicted 
demand is zero, to case 8 normal, where positive demand is always predicted. Second, after 
zonal aggregation the mean size of non-zero values of Sb and B would be expected to be 
closer. This is expected to improve the correspondence between synthetic and pivoted 
growth for case 8 normal cells. 

4.1.1 Initial tests 
To assess the performance improvement zonal aggregation offered, BTS made initial tests 
where the test matrices were aggregated from the detailed 2690 zones to the 80 statistical 
local area (SLA) zones used in the 2006 zoning system, and then the pivoting process was 
applied at the 80 SLA zone level. Table 15 summarises the performance improvement 
observed for the car driver mode for the rescaled JTW and expanded HTS test matrix sets. 

In addition to the sparsity index, Table 15 summarises the percentage of synthetic base 
matrix demand that occurs for pivoting cases 1–4 where the base matrix demand is zero, 
and compares the ratio between predicted and synthetic growth, for all cells and for case 8 
normal cells where the standard factor pivoting formula applies (P=B.Sf/Sb). 
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Table 15: Impact of zonal aggregation on car driver predictions 

 
 Sparsity 

index 
% Sb 

cases 1–4 

Growth ratio,  
predicted / synthetic 

  All cells Case 8 
normal cells 

JTW test 
matrix set 

2690 zones 19.1 44.8 % 0.70 0.67 
80 SLA zones 1.25 0.12% 0.98 0.97 

HTS test 
matrix set 

2690 zones 949.3 97.0 % 0.26 -0.61 
80 SLA zones 4.06 15.0 % 0.95 0.94 

These initial tests demonstrate significant performance improvements from zonal 
aggregation. At the more aggregate SLA level, base matrix sparsity is much lower, there are 
significant reductions in the percentage of Sb that occur in cases 1 to 4, and the 
correspondence between predicted and synthetic growth is much improved. Furthermore, 
the sign change issue observed for the case 8 normal cells when pivoting at the 2690 zone 
level is overcome. 

Table 15 demonstrates that zonal aggregation works very well for car driver. To assess the 
performance improvement aggregation offers across all the modes, Table 16 summarises 
the ratios of predicted and synthetic growth for each of the five modes. 

Table 16: Impact of zonal aggregation on predicted demand: synthetic growth ratios, all modes 

 
 Car 

driver 
Car 

pass. Rail Ferry Bus 
  

JTW test 
matrix set 

2690 zones 0.70 0.52 0.48 0.26 0.31 
80 SLA zones 0.98 0.87 0.85 -0.38 0.60 

HTS test 
matrix set 

2690 zones 0.26 0.22 0.34 0.50 0.20 
80 SLA zones 0.95 0.79 0.58 -1.21 0.37 

With the exception of ferry, the correspondence between synthetic and predicted growth is 
significantly improved by zonal aggregation, although there is still a tendency for predicted 
growth to fall below synthetic, particularly for bus. For ferry, the results are worse with 
zonal aggregation, which may follow from the fact that ferry is only used for a few limited 
origin-destination (OD) movements within an SLA-SLA matrix. 

Overall it was concluded that zonal aggregation significantly improves the 
performance of the pivoting process, and so should form part of the enhanced 
pivoting approach. 

4.1.2 Selecting the appropriate level of aggregation 
The 80 SLA zones defined in the 2006 zoning system performed well in these initial tests, 
and was therefore a candidate level of aggregation for the enhanced pivoting approach. 
Before deciding for certain that SLA level was the appropriate level of zonal aggregation it 
was important to check that the maximum population and employment per SLA to ensure 
that there are not areas where too high a fraction of demand is concentrated. Table 17 
summarises key headline statistics at the SLA zone level, which can be compared to the 
equivalent figures at the detailed 2690 zone level, which are presented in Table 18. 



RAND Europe Enhancements to the pivoting process 

 

21 

Table 17: SLA zone characteristics 

 Population Employment Zonal area (km2) 

Mean  65,178 30,838 306 
Standard deviation 27,045 32,008 727 

Coefficient of variation 0.415 1.038 2.381 
Minimum 13,746 4527 4 
Maximum 139,163 274,473 4322 

Total 5,214,203 2,467,000 24,444 

For population, there is reasonable variation in total population between SLA, with a 
coefficient of variation of 0.415. The maximum population is 139,163 which represents 
2.7% of the total population of the study area. For employment, the coefficient of 
variation shows that there is more variation between SLA. This is expected as employment 
tends to be concentrated in centres. The SLA with the highest employment is Inner 
Sydney, which accounts for 11.1% of total employment. This is also the area with the 
smallest area, just 4 square km. 

Table 18: Detailed 2690 zone characteristics 

 Population Employment Zonal area (km2) 

Mean  1938 917 9.1 
Standard deviation 1412 1400 58.8 

Coefficient of variation 0.729 1.527 6.474 
Minimum 0 0 0.003 
Maximum 7563 16,723 1202 

Total 5,214,203 2,467,000 24,444 

At the detailed zone level there is greater variation in population, employment and zonal 
area between zones relative to the 80 SLA zone level, shown by the higher coefficients of 
variation relative to those presented in Table 17. In application of the STM, zones are set 
to have a minimum of ten households and minimum employment of ten persons. This 
approach means that all cells can have Sb>0 and Sf>0, though for public transport modes it 
is also necessary to have a path through the network for the cell in question. 

Overall, the maximum population and employment numbers per SLA zone were judged to 
be acceptable; in particular, the area defined by the Inner Sydney SLA is small and so does 
not account for too high a fraction of total employment. Therefore, the SLA zone system 
was adopted as the zone system for the aggregate pivot procedure. 

During 2012, a new 2011 travel zone system will be adopted. The number of travel zones 
will only change slightly from the current total of 2690. However, the SLA level of 
geography will be replaced with a hierarchy of areas, with Statistical Area 1 (SA1), 
Statistical Area 2 (SA2), etc. defined. There will be around 350 SA2 areas, which implies 
matrices with 112,500 cells compared with 6400 in the SLA zone system. On the basis of 
the analysis in this report, we believe that using the more detailed SA2 zone system would 
significantly reduce the benefits of zonal aggregation as the aggregate matrices would be 
sparser. Further analysis will be required when matrices are available defined with the new 
2011 zoning system, but ideally the aggregate pivot procedure would be applied using 
aggregate zones of comparable size to the 80 SLAs defined with the 2006 zoning system. 
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4.1.3 Disaggregating demand back to detailed zone level 
In order to implement pivoting at the aggregate level, a procedure was required to 
distribute the predicted demand at the aggregate level back down to the detailed 2690 zone 
level. The best available information for this disaggregation process taking into account 
future travel demand is the synthetic future matrix Sf, except for a special case where the 
base matrix B has to be used instead. The following formulae set out how this process 
operates. 

Let BA, SbA, SfA be the base matrix, synthetic base matrix and synthetic future matrix at an 
aggregate level A, and Ba, Sba, Sfa be the corresponding matrices at a disaggregate level a, 
where: 


a

a
A BB         (4.1) 


a

a
A SbSb         (4.2) 


a

a
A SfSf         (4.3) 

PA, which is the aggregate predicted matrix calculated, is a function of the aggregate base 
matrix BA , aggregate synthetic base matrix SbA and aggregate synthetic future matrix SfA. PA 
is obtained by applying the eight-case method taking into account the revised definition of 
the switch point between normal and extreme growth discussed in Section 4.2. 

To determine the predicted matrix at the disaggregate level, two disaggregation formulae 
are required. The default is to distribute demand to the detailed zonal level using the 
distribution of Sf: 

A

A

aA
aA

a Sb
BSf

Sf
SfPP **       (4.4) 

where: Pa is the predicted matrix at disaggregate level, which is subsequently normalised 
as is laid out in Section 4.3 to obtain the final pivoted matrix. 

It is clear from Equation (4.4) above that adding up Pa over the aggregated cells will give 
PA. Moreover, the adjustment that is made relative to the standard disaggregate pivoting 

process is simply to replace the factor 
a

a

Sb
B

, which is unreliable because Ba is often 0 and 

for the low fraction of cells where Ba is not zero it is typically much larger than Sb, by 

A

A

Sb
B

, which is a more reliable value.3 

For aggregate pivot case 5 (BA>0, SbA=0, SfA=0) the default formulation given in Equation 
(4.4) cannot be used, as SfA=0 but pivoted demand at the aggregate level is non-zero, and 

                                                      
3  At the disaggregate level, the standard pivoting formula for case 8 normal can be written as Pa = 
Sfa.Ba/Sba. By moving to aggregate pivoting this formula is modified to Pa = Sfa.BA/SbA. 
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therefore an alternative formulation is required. In this instance, the approach is to simply 
take the distribution of demand in the base matrix: 

aa BP         (4.5) 

Note that the disaggregation procedure takes place at the very end of the pivoting process, 
after the two normalisation steps set out in Section 4.3 have been applied. 

ALOGIT code to implement the disaggregation procedure has been written and the 
procedure has been tested by comparing the matrix totals by mode before and after 
disaggregation. 

4.2 Modification to the extreme growth switch point 

4.2.1 Why the case 8 extreme growth rule was modified 
The formulation that determines whether growth is normal or extreme was classifying too 
much case 8 growth as ‘extreme’, particularly where the base matrices are sparse, 
contributing to the under-prediction of growth. As demonstrated in Table 15, zonal 
aggregation reduces this problem. Nonetheless, an improved formulation for extreme 
growth was required that was able to work with a range of different base matrices with 
different expansion factors. 

For case 8, the key ratio is Sb/B, which is compared with k1/k2 to determine how the switch 
point for ‘extreme growth’ pivoting is calculated. This relates closely to the sparsity ratio. 
Suppose we assume that E(B)=Sb, which is basically saying that the model is good, and 
that B is sampled at a rate R. Then the probability of observing a trip in a cell is Sb/R, 
which is a small number in most cases, so that observing two trips is rare.4 If a trip is 
sampled, B would then have R trips in that cell. Then we can calculate, for cells with Sb>0: 

   Probability of positive cell in B = Sb/R  Sb/B 

Assuming that if Sb=0 there is no probability of B>0, the sparsity ratio for the matrix 
would then also be equal to this. 

The sparsity indices are significantly reduced by zonal aggregation. However, indices 
greater than 10 still occur for car passenger and public transport modes with the HTS test 
matrix set, as shown in Table 19. 

Table 19: Sparsity indices after aggregation to 80 SLA zone level 

 
Car driver Car pass. Rail Ferry Bus 

JTW test matrix set 1.25 1.74 2.0 1.7 2.8 
HTS test matrix set 4.1 13.3 12.5 15.5 17.0 

For cases where the sparsity index is greater than 10, it is reasonable to conclude that in 
most cells the ratio Sb/B < 0.1. 

                                                      
4  In fact, in the JTW matrices small values in the range 0 to 1 are rounded to either 0 or 3, so this 
discussion is not exactly applicable. 
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The original pivoting process defined the switch point between normal and extreme 
growth for case 8 as follows, with the extreme growth rule applied if Sf>X2: 











2

1
212 ,max...

k
k

B
SbkSbkSbX     (4.6) 

with k1=0.5 and k2=5. 

This gives a ratio for k1/k2=0.1. If Sb/B<0.1, then the second term in the max is operative 
and this formula reduces to X2=Sb, which is inappropriate because it means that the 
extreme growth rule is applied where Sf>Sb, which as a result of growth in population and 
employment would be expected for nearly all cells. When a high fraction of case 8 cells are 
classified as extreme, predicted growth is lower than synthetic growth. 

Table 19 illustrates that the STM pivoting process has to operate with base matrices with a 
wide range of different sparsity values, and the discussion above illustrates that the 
relationship of k2 to the ratio Sb/B is problematic. Therefore the formula for the switch 
point between normal and extreme growth X2 was simplified to: 

22 .kSbX         (4.7) 

This gives a switch point between normal and extreme growth that is able to work with 
matrices at a range of different sparsity values, consistent with BTS’s objective for this 
work of developing an enhanced pivoting process that is able to operate with a range of 
different base matrices. 

4.2.2 Selection of switch point parameter values 
A number of tests were made to determine the appropriate value for k2 in the simplified 
formulation given in Equation (4.7) for case 8 pivoting. A relevant consideration is that for 
case 4 the switch point for extreme growth is formulated as: 

21 .kSbX         (4.8) 

with k2 = 5. 

Thus consistency with the case 4 definition of extreme growth is an advantage of moving 
to the simpler formulation for case 8 given in Equation (4.7). 

Three sets of tests were run to investigate different switch point parameter values: 

 simple form 1: k2 = 5 for cases 4 and 8, ensuring consistency in the k2 values 
between cases 4 and 8, and maintaining the factor of 5.Sb as the switch point 
between normal and extreme growth 

 simple form 2: k2 = 3 for cases 4 and 8, ensuring consistency between cases 4 and 
8, but defining extreme growth at a lower level 

 simple form 3: k2 = 3 for case 4, but k2 = 5 for case 8 

The third approach aims to maximise the correspondence between synthetic and pivoted 
growth because for case 4 normal growth the pivoting rule is P=0, so defining more cases 
as ‘extreme’ increases the predicted demand, whereas for case 8 moving cells from normal 
to extreme cases reduces predicted demand. This approach introduces an inconsistency in 
the definition of extreme growth between cases 4 and 8. 
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The results were compared to the rules used in the original process, where for case 8 the 
complex switch point formulation given in Equations (1.1) and (1.2) is used. All tests were 
undertaken pivoting at the aggregate 80 SLA zone level, as pivoting takes place at this level 
in the enhanced pivoting process. 

The sets of tests were run for the rescaled JTW and expanded HTS base matrices. Table 20 
summarises the correspondence between synthetic and predicted growth obtained for the 
rescaled JTW matrices in the results. 

Table 20: k2 tests, rescaled JTW matrices 

 Growth ratio, predicted : synthetic 

 Complex 
formulation 

k1=0.5 
k2=5 

Simple form 1: 
 

k2=5 case 4 
k2=5 case 8 

Simple form 2: 
 

k2=3 case 4 
k2=3 case 8 

Simple form 3: 
 

k2=3 case 4 
k2=5 case 8 

Car driver 0.976 0.997 0.993 0.997 
Car passenger 0.871 0.935 0.968 0.936 

Train 0.854 0.940 0.925 0.953 
Bus 0.603 0.677 0.686 0.691 

Ferry -0.379 -0.187 -0.189 -0.178 

All three combinations of the simplified formulation give clear performance improvements 
(growth ratios closer to 1) relative to the complex formulation. Comparing simple forms 1 
and 2, simple form 1 performs better for three of the five modes. Simple form 3 offers a 
slight improvement in performance relative to simple form 1. 

Table 21 presents the same set of comparisons for the sparser expanded HTS matrices. 

Table 21: k2 tests, expanded HTS matrices 

 Growth ratio, predicted / synthetic 

 
Complex 

formulation 

Simple form 1: 
 

k2=5 case 4 
k2=5 case 8 

Simple form 2: 
 

k2=3 case 4 
k2=3 case 8 

Simple form 3: 
 

k2=3 case 4 
k2=5 case 8 

Car driver 0.948 1.038 1.019 1.046 
Car passenger 0.792 1.013 1.073 1.077 

Train 0.584 0.892 0.899 0.959 
Bus 0.373 0.600 0.635 0.660 

Ferry -1.214 -0.716 -0.677 -0.677 

More substantial improvements in performance are observed in moving from complex to 
simple forms with the sparser HTS matrices, in particular for train and bus modes. Simple 
form 2 performs better than simple form 1 in four of the five modes, though the difference 
in performance is not large. Simple form 3 performs best for train and bus, but increases 
the over-prediction of growth for car driver and car passenger. 

Following these tests, it was decided to adopt simple form 1 in the enhanced pivoting 
process, with k2=5 for both cases 4 and 8. Moving to a lower value of k2=3 in simple form 
2 gave mixed results relative to simple form 1, and while simple form 3 with mixed k2 
values gives the best results overall, the improvements relative to simple form 1 are 
relatively small and this approach introduces a discontinuity between the case 4 and 8 
switch points. 
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4.3 Normalisation 

Both zonal aggregation and modifying the switch point for normal and extreme growth are 
expected to improve the performance of the pivoting procedure. However, they will not 
guarantee that synthetic and pivoted growth match exactly. Furthermore, sign changes may 
still occur in particular cases where (for example) small positive synthetic growth results in 
small negative growth after pivoting, and such results are difficult to explain to users of the 
STM. 

Normalisation means applying a procedure so that synthetic and pivoted growth match 
exactly at the level at which normalisation is applied, which might be growth in total trips, 
or growth in trips by a given mode. 

Daly, Fox and Patruni (2011) describe a mathematical procedure that allows the pivoted 
and synthetic growth to match exactly at each level represented in the choice structure, 
rather than at only one level in the choice structure. The detailed thinking is complex, and 
is presented in Appendix A, but in summary there are two approaches which could be 
followed: 

 implementing a utility-based correction, which requires the travel demand models 
to be modified, i.e. to calculate a set of K-factors for each mode and destination, 
so that base and synthetic base trips match exactly 

 implementing a ‘top-down normalisation’ so that synthetic and predicted growth 
are consistent for each level in the choice structure 

Both these approaches would take account of the complex and varied tree structures used 
in the STM, which include toll road choice and park-and-ride nests for a number of the 
purposes. The two approaches would give identical answers, and in both cases would 
ensure that base and synthetic base trips match exactly at each level in the model structure 
for a given origin zone. 

However, implementation of either of these procedures requires significant additional 
programming, which was not possible within the resources available for this project. 
Therefore, a simpler normalisation consistent with the thinking in the original proposal 
was specified. 

4.3.1 Mode-origin normalisation 
The first normalisation approach that has been specified is to apply a mode normalisation 
for each aggregate SLA origin zone. This step is termed ‘mode-origin normalisation’, and 
the normalisation factors are calculated as follows: 
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where: MOF is the mode-origin normalisation factor for the origin zone 

d
B is the sum over destinations of B for the origin zone 

d
P is the sum over destinations of pivoted demand P before normalisation for 

the origin zone 
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d
Sf is the sum over destinations of Sf for the origin zone 

d
Sb is the sum over destinations of Sb for the origin zone 

If one or more of these summations is 0 for a given origin zone, then the mode 
normalisation factor is set to a value of 1. 

Then the mode normalisation factor is applied to each cell for the origin zone in question: 

 PMOFP .'        (4.9) 

where: P’ is the predicted demand after mode-origin normalisation 

The mode normalisation process has been applied at the SLA origin zone level, i.e. at the 
aggregate zonal level at which pivoting has been implemented in the enhanced process. 

4.3.2 Overall mode normalisation 
This mode-origin approach ensures that synthetic and predicted growth in tours by each 
mode are matched exactly for each origin zone. However, as will be seen in Chapter 5, this 
does not ensure that synthetic and pivoted growth in tours match when demand is 
summed over the whole matrix. Therefore, a second normalisation was applied after the 
mode-origin normalisation, termed ‘overall mode normalisation’. The normalisation 
factors are calculated as follows: 
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    (4.10) 

where: MF is the overall mode normalisation factor 

 o d
B is the total base matrix demand 

 o d
P' is the total pivoted demand after mode-origin normalisation 

 o d
Sf is the total synthetic future demand 

 o d
Sb is the total synthetic base demand 

Then the mode normalisation factor is applied to each cell in the matrix as follows: 

 '.* PMFP         (4.11) 

where: P* is the predicted demand after overall mode normalisation 

It is emphasised that when a multi-stage normalisation is applied, only the final 
normalisation is guaranteed to hold. So in the enhanced procedure, the overall mode 
normalisation is guaranteed by the final step, but mode normalisation at the origin level is 
not. The further the overall mode normalisation factor MF is from 1, the further the 
overall mode normalisation takes the results from ensuring the results are normalised at the 
mode-origin level. 
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CHAPTER 5 Performance of enhanced pivoting 
process 

To assess the performance of the enhanced pivoting process, the analysis of the original 
pivoting process presented in Chapter 3 has been repeated. For the enhanced pivoting 
process, the performance measures have been calculated after each of the three performance 
improvements is applied so that the relative impact of each improvement can be assessed. 
Section 5.1 presents the analysis of the performance of the enhanced process applied to the 
zone to zone matrices, and Section 5.2 presents analysis of the enhanced process applied to 
the station to station matrices. 

5.1 Zone to zone matrices 

5.1.1 Base matrix sparsity 
Table 22 summarises the impact of zonal aggregation on the sparsity indices for the matrix 
set that uses the rescaled JTW base matrices. It should be noted that with 2690 zones there 
are 7.2 million matrix cells, whereas with 80 zones there are only 6400 matrix cells, and 
therefore zonal aggregation reduces the number of matrix cells by a factor of just over 
1100. 

Table 22: Sparsity indices, rescaled JTW base matrices 

Mode 
Original process: 
pivoting at 2690 

zone level 

Enhanced process: 
pivoting at 80 SLA 

zone level 
Ratio 

Car driver 19.1 1.25 15.3 
Car passenger 77.4 1.74 44.4 

Rail 42.5 2.03 20.9 
Ferry 9.0 1.69 5.3 
Bus 42.2 2.75 15.4 

As would be expected, zonal aggregation has significantly reduced the sparsity of the 
matrices, with a more than ten-fold reduction in sparsity for all modes except ferry. 
Following zonal aggregation the levels of sparsity are comparable between the base and 
synthetic base matrices, i.e. the sparsity indices are no higher than 3. 

Table 23 summarises the impact of zonal aggregation on the sparsity indices for the matrix 
set that uses the expanded HTS base matrices. 
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Table 23: Sparsity indices, expanded HTS base matrices 

Mode 
Original process: 
pivoting at 2690 

zone level 

Enhanced process: 
pivoting at 80 SLA 

zone level 
Ratio 

Car driver 949.3 4.06 233.6 
Car passenger 3770.6 13.3 284.4 

Rail 2373.5 12.5 189.9 
Ferry 371.4 15.5 24.0 
Bus 1848.9 17.0 108.8 

The expanded HTS base matrices are considerably sparser than the JTW matrices at the 
2690 zone level. As a result, the reduction in sparsity that follows from zonal aggregation is 
more dramatic than that observed for the JTW base matrix set, with a more than 100-fold 
reduction in sparsity observed for all modes except ferry. Nonetheless, for all modes except 
car driver the base matrices remain more than ten times as sparse as the synthetic matrices 
after zonal aggregation. 

5.1.2 Comparison of synthetic and predicted growth 
Table 24 presents a comparison of the ratio between predicted and synthetic growth for 
each mode for the rescaled JTW base matrix set. The table shows the impact of each of the 
three performance improvements on the predicted to synthetic growth ratio. The three 
performance improvements (zonal aggregation, revised switch point, normalisation) are 
applied cumulatively, so for example the revised switch point is applied in addition to 
zonal aggregation, and so the table allows the relative impact of each performance 
improvement to be assessed. 

Table 24: Synthetic and predicted growth comparisons, rescaled JTW base matrix set 

  Predicted / synthetic growth ratios 

Mode Synthetic 
growth 

Original 
pivoting 
process 

Zonal 
aggregation 

Revised 
switch 
point 

Normalisation, 
step 1: origin 

mode 

Normalisation, 
step 2: total 

mode 
Car driver 40.5 % 0.70 0.98 1.00 1.02 1.00 
Car pass. 12.6 % 0.52 0.87 0.93 1.00 1.00 

Rail 86.0 % 0.48 0.85 0.94 0.96 1.00 
Ferry 9.4 % 0.26 -0.37 -0.19 0.09 1.00 
Bus 74.3 % 0.31 0.60 0.68 0.72 1.00 

Of the various measures, zonal aggregation results in the largest improvement in the 
correspondence between synthetic and predicted growth (with the exception of ferry, 
where positive synthetic growth is translated into negative predicted growth). 

The revised switch point leads to a further performance improvement, i.e. 
predicted/synthetic growth ratios move closer to 1 (predicted growth for ferry still has the 
wrong sign but the growth ratio does move closer to 1). This performance improvement 
comes about because more demand is classified as case 8 normal where the standard factor 
pivoting formula is applied. At this stage, synthetic and pivoted growth match fairly well 
for car driver, car passenger and rail; ferry remains problematic, however, with a sign 
change issue; and for bus synthetic growth remains significantly under-predicted (this 
should be improved when the new STM is implemented). 

The first normalisation step, mode normalisation for each origin, results in a small 
performance improvement for car passenger, rail and bus. Furthermore, at the SLA level, 
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the application of origin-mode normalisation has ensured that the percentage growth in 
demand by mode as predicted by the travel demand models is exactly matched after 
pivoting.5 However, as illustrated in Table 24, this condition does not ensure that 
synthetic and pivoted growth rates at the whole matrix level match exactly after pivoting, 
and in particular for bus synthetic growth remains significantly under-predicted. 

In order to understand better the results that have been obtained, the results for bus were 
analysed further. This analysis revealed that at the 80 SLA origin level at which the mode 
normalisation factors are defined, there was a strong negative correlation of -0.39 between 
base matrix demand (ΣdB) and synthetic growth (ΣdSf/ΣdSb). This means that higher 
synthetic growth occurs for SLA origins associated with lower base matrix demand, and as 
a result the percentage growth in trips after pivoting is lower than predicted by the 
synthetic matrices. This result follows from significant differences in the distributions of 
demand over the 80 SLA origin zones between B and Sb. 

Given the significant difference between synthetic and predicted growth for bus, it was 
decided to implement a second normalisation step, an overall mode normalisation, so that 
synthetic and predicted growth match exactly for each mode. The overall mode 
normalisation is applied by calculating a single normalisation factor for each mode, applied 
across all origins and destinations for that mode, i.e. at the whole matrix level. For car 
driver, car passenger and rail the impact of this step is small – i.e. normalisation factors 
close to 1 are applied – as synthetic and pivoted growth matched well after origin-mode 
normalisation. However, for bus a factor of 1.39 is required, which means that predicted 
growth at the origin level will be significantly higher than predicted by the travel demand 
models. When the new version of the STM is operational it is recommended that analysis 
is undertaken to compare the distributions of B and Sb for bus to better understand any 
differences, and it is hoped that with a better correspondence between the two the overall 
mode normalisation factor required for bus will be substantially closer to 1. 

Pivoting is problematic for ferry. More than three times as many trips exist in the ferry 
base matrices as in the synthetic base, so the correspondence between B and Sb is poor, and 
zonal aggregation does not work well for this mode. BTS is aware of issues with the current 
base matrices for ferry, and given these issues and the low mode share for ferry it was 
agreed with BTS that it was not worthwhile developing a separate pivoting procedure just 
for ferry. Given these results BTS may choose not to use the pivoted results for ferry when 
it applies the model. 

Table 25 presents the same set of comparisons for the expanded HTS base matrix set. 

                                                      
5  For a given SLA origin, the normalisation can only be calculated if there is demand in the base 
matrix and the synthetic base matrix to at least one destination zone. If there is no base matrix demand and/or 
no synthetic base matrix demand in any destination zone then the normalisation factor is set to 1. 
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Table 25: Synthetic and predicted growth comparisons, expanded HTS base matrix set 

  Predicted / synthetic growth ratios 

Mode Synthetic 
growth 

Original 
pivoting 
process 

Zonal 
aggregation 

Revised 
switch 
point 

Normalisation, 
step 1: origin 

mode 

Normalisation, 
step 2: total 

mode 
Car driver 40.5 % 0.26 0.95 1.04 1.03 1.00 
Car pass. 12.6 % 0.22 0.79 1.01 0.87 1.00 

Rail 86.0 % 0.34 0.58 0.89 0.92 1.00 
Ferry 9.4 % 0.49 -1.21 -0.41 -0.12 1.00 
Bus 74.3 % 0.20 0.37 0.60 0.69 1.00 

Consistent with the results obtained from the rescaled JTW base matrix set, the 
enhancement that yields the largest performance improvement is zonal aggregation, though 
once again ferry is problematic with a sign change occurring, i.e. after pivoting at the 
aggregate level a reduction in trips is predicted. 

The revised switch point gives a further improvement, with predicted growth for car driver 
and car passenger matching synthetic within 5%, and for rail the synthetic growth ratio 
improves from 0.58 to 0.89. The results for bus improve from 0.37 to 0.60, but 0.60 is 
still a significant under-prediction of synthetic growth (again, this should be improved 
when the new STM is implemented). 

Based on this all matrix comparison of synthetic and predicted growth, the application of 
origin-mode normalisation yields slight performance improvements for car driver, rail and 
bus, but a worsening of the performance for car passenger. For bus, pivoted growth 
remains significantly below that predicted from the synthetic matrices. 

The second normalisation step ensures that overall synthetic and pivoted growth by mode 
match exactly. For bus, a factor of 1.45 is required which means that at the origin level 
predicted growth will be significantly higher than synthetic. When the new STM is 
operational the overall mode normalisation factors required for bus when working with the 
expanded HTS base matrices should be reviewed to check that they are not too far from 1, 
i.e. that the expected improvement that should follow from the greater similarity between 
B and Sb for bus has in fact occurred. 

5.1.3 Distribution of demand across the eight cases 

Tabulations of the distribution of demand across the eight cases have been examined for 
each of the five modes at each step of the enhancements to the process. To illustrate the 
patterns of changes, the distributions for the bus mode pivoted using the expanded HTS 
matrix set are presented here. This matrix set has been chosen as the base matrices are 
relatively sparse. 

Table 26 presents the distribution of demand across the eight cases in the original pivoting 
process, where pivoting is undertaken at the 2690 zone level. 



RAND Europe Performance of enhanced pivoting process 

 

33 

Table 26: Distribution of bus demand, expanded HTS matrix set, original pivoting process 

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 10.4 % 9.7 % 

3 0 > 0 0 0.0 % 0.5 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 96.8 % 74.1 % 0.0 % 

4e 0 > 0 > 0 0.0 % 2.0 % 15.0 % 8.7 % 

5 > 0 0 0 1.8 % 0.0 % 0.0 % 1.6 % 

6 > 0 0 > 0 0.3 % 0.0 % 0.0 % 0.3 % 

7 > 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 40.0 % 0.3 % 0.1 % 29.1 % 

8e > 0 > 0 > 0 57.9 % 0.4 % 0.3 % 50.6 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

This distribution illustrates two significant issues. First, 97% of Sb demand and 74% of Sf 
demand occur in case 4n where no demand is predicted after the pivoting. Second, over 
50% of the predicted demand falls under extreme growth regime case 8e, and this demand 
corresponds to less than 0.5% of the model’s demand predictions Sb and Sf. 

Table 27 presents the distribution of bus demand across the eight cases following zonal 
aggregation to the SLA zone level. 

Table 27: Distribution of bus demand, expanded HTS matrix set, impact of aggregation 

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 0.0 % 0.0 % 

3 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 37.8 % 41.3 % 0.0 % 

4e 0 > 0 > 0 0.0 % 2.3 % 13.3 % 5.7 % 

5 > 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

6 > 0 0 > 0 0.0 % 0.0 % 0.0 % 0.0 % 

7 > 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 77.6 % 56.2 % 41.1 % 73.5 % 

8e > 0 > 0 > 0 22.4 % 3.7 % 4.2 % 20.8 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

Substantial improvements are observed as a consequence of zonal aggregation. The 
percentage of Sb and Sf demand that occurs in case 4 is significantly reduced, though a 
substantial proportion of case 4 demand remains, and in case 8 the balance between 
normal and extreme growth has altered with close to three-quarters of demand now 
predicted by the standard case 8n growth regime. 
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Table 28: Distribution of bus demand, expanded HTS matrix set, impact of revised case 8 
switch point for extreme growth 

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 0.0 % 0.0 % 

3 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 37.8 % 41.3 % 0.0 % 

4e 0 > 0 > 0 0.0 % 2.3 % 13.3 % 5.1 % 

5 > 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

6 > 0 0 > 0 0.0 % 0.0 % 0.0 % 0.0 % 

7 > 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 99.3 % 59.8 % 44.9 % 92.2 % 

8e > 0 > 0 > 0 0.7 % 0.1 % 0.4 % 2.7 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

The modification to the case 8 switch point has a substantial impact on the distribution of 
demand between cases 8n and 8e. The proportion of demand that is predicted under the 
case 8e extreme growth rule has reduced from 20.8% to 2.7%. This shift results in the 
improved correspondence between synthetic and predicted growth highlighted in Table 
25. On the other hand, around 40% of synthetic demand still occurs for case 4n where 
predicted demand is zero. 

As discussed in Section 4, synthetic growth for bus remains significantly below predicted 
growth after the application of the revised case 8 switch point, and so two normalisation 
steps were applied. The application of the normalisation factors has no impact on the 
distribution of demand across the eight cases and so the results given in Table 28 represent 
the distribution at the end of the enhanced pivoting process. 

5.2 Station to station matrices 

5.2.1 Base matrix sparsity 
An aggregation procedure over stations has not been applied for the station to station 
matrices used for rail. Aggregating over stations is outside the scope of this project, and 
furthermore would have less benefit relative to the zonal matrices because, as shown in 
Table 29, the sparsity indices for the RailCorp matrices are significantly lower than those 
observed for the JTW and HTS matrices. The lower sparsity follows from the fact that the 
number of stations (343) is significantly lower than the number of zones (2690). Higher 
sparsity indices are observed in Table 29 for the HTS rail station to station matrices. 
However, this matrix set has been used for testing purposes only and will not be used when 
the STM is used in application. 

Table 29: Sparsity indices, station to station rail matrices 

Matrix set Sparsity index 
RailCorp 3.75 
HTS rail 65.55 
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5.2.2 Comparison of synthetic and predicted growth 
For the station to station matrices, there is no zonal aggregation step, but nonetheless the 
impact of the revision to the switch point between normal and extreme growth can be 
assessed. 

Tests of origin station normalisation revealed that application of the procedure resulted in 
a worse correspondence between synthetic and predicted growth. The demand models 
predict growth in demand at the origin zone level, rather than the origin station, and so 
normalising at the origin station does not have the same behavioural rationale as 
normalising at the origin zone level. Given that applying an origin station normalisation 
resulted in a worse correspondence between synthetic and predicted growth only, an overall 
normalisation has been applied for the station to station matrices. 

Table 30 presents synthetic and predicted growth comparisons for the station to station 
matrices. 

Table 30: Synthetic and predicted growth comparisons, station to station matrices 

  Predicted / synthetic growth ratios 

Matrix set Synthetic 
growth 

Original 
pivoting 
process 

Revised 
switch point 

Normalisation: 
total mode 

RailCorp 78.2 % 0.87 1.20 1.00 
HTS rail 78.2 % 0.60 1.14 1.00 

For the RailCorp matrix set, moving to the revised switch point results in higher predicted 
growth, with a change from a 13% under-prediction of growth to a 20% over-prediction, 
so performance is slightly worse. For the HTS rail matrix moving to a revised switch point 
again results in higher predicted growth, but in this case the performance is significantly 
improved with a change from a 40% under-prediction to a 14% over-prediction of 
synthetic growth. 

The application of a total mode normalisation by definition ensures that synthetic and 
predicted growth match exactly. 

5.2.3 Distribution of demand across the eight cases 
Table 31 presents the distribution of demand across the eight cases for the RailCorp matrix 
set for the original pivoting process. 
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Table 31: Distribution of rail demand, RailCorp matrix set, original pivoting process 

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 25.0 % 24.7 % 

3 0 > 0 0 0.0 % 0.2 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 6.3 % 5.0 % 0.0 % 

4e 0 > 0 > 0 0.0 % 0.5 % 2.9 % 1.5 % 

5 > 0 0 0 1.2 % 0.0 % 0.0 % 0.7 % 

6 > 0 0 > 0 2.3 % 0.0 % 2.9 % 4.3 % 

7 > 0 > 0 0 9.3 % 8.4 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 70.9 % 81.2 % 54.8 % 48.6 % 

8e > 0 > 0 > 0 16.2 % 3.5 % 9.5 % 20.2 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

The percentage of synthetic base demand that occurs in cases 1–4, where the base matrix is 
0 is relatively low at 7.0%. A quarter of synthetic future demand occurs in case 2; however, 
for this case demand is predicted after pivoting (P=Sf) so this growth is not lost. 

Table 32 shows the impact on the distribution of rail demand over the eight cases of 
revising the switch point for case 8 extreme growth. 

Table 32: Distribution of rail demand, RailCorp matrix set, impact of revised case 8 switch point 
for extreme growth 

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 25.0 % 21.3 % 

3 0 > 0 0 0.0 % 0.2 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 6.3 % 5.0 % 0.0 % 

4e 0 > 0 > 0 0.0 % 0.5 % 2.9 % 1.3 % 

5 > 0 0 0 1.2 % 0.0 % 0.0 % 0.6 % 

6 > 0 0 > 0 2.3 % 0.0 % 2.9 % 3.7 % 

7 > 0 > 0 0 9.3 % 8.4 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 82.5 % 83.1 % 56.5 % 58.4 % 

8e > 0 > 0 > 0 4.6 % 1.6 % 7.8 % 14.7 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

The revised switch point for case 8 extreme growth results in an increase in demand 
predicted under the normal growth regime (8n) and a corresponding slight reduction in 
the demand predicted under the extreme growth regime (8e). 
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CHAPTER 6 Summary and recommendations 

6.1 Zone to zone matrices 

The zone to zone matrices used for this analysis are defined using the 2006 zoning system. 

The current assumption of setting cell values with less than 0.001 trips to be zero is 
reasonable, with only tiny fractions of synthetic demand (at most 0.6%) lost as a 
result of this assumption. 

Pivoting at the aggregate 80 SLA level rather than the 2690 zone level results in a 
significant improvement to the correspondence between synthetic and predicted 
growth. As would be expected, matrix sparsity is significantly reduced by aggregation. 
Over the eight cases, demand is shifted from case 4, where the base matrix is 0, to case 8 
where the base matrix is defined, and this contributes to the improved correspondence 
between synthetic and predicted growth. 

Revising the switch point between normal and extreme growth for case 8 results in a 
further improvement to the correspondence between synthetic and predicted growth. 
This improvement is observed because the revised switch point results in a higher fraction 
of case 8 demand being classified as ‘normal’, where the standard factor pivoting formula is 
applied. The revised switch point formulation is more robust for working with matrices at 
a range of different levels of sparsity. 

Incorporation of origin-mode normalisation ensures that synthetic and predicted 
growth by mode match exactly at the aggregate SLA origin level. However, this does 
not ensure that overall synthetic and predicted growth match exactly when summed across 
all origins. In particular, significant differences are observed for bus due to differences in 
the distributions of demand between the base matrices B and the synthetic base Sb. 

Therefore a second normalisation step has been applied so that overall synthetic and 
predicted growth match exactly for each mode. The second step is termed overall mode 
normalisation. For car driver, car passenger and rail, this step applies factors relatively close 
to 1, so the changes relative to the origin-mode normalised results are modest. However, 
for bus normalisation factors of up to 1.45 are required, which means that at the origin 
SLA level synthetic growth will be over-predicted by up to 45%. A difference of this level is 
not desirable, and so when the new STM is operational it is recommended that this 
analysis be repeated to check that overall normalisation factors closer to 1 are obtained for 
bus. 
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The results for ferry are problematic. Significant differences between the base matrices B 
and the synthetic base Sb for ferry underlie this result, and if the results are as poor when 
matrices from the new STM are available BTS may decide not to use the pivoting process 
for ferry. 

6.2 Station to station matrices 

For the RailCorp matrix set, the station to station matrix which will be used in 
implementation, the existing pivoting process gives a fairly good correspondence between 
synthetic and predicted growth. 

No station aggregation step is applied, as the matrices are much less sparse than the zone-
zone matrices and as a result the original process works fairly well. Note that a zonal 
aggregation would not be appropriate because trips in the matrix are associated with 
stations rather than zones. 

Revising the switch point between normal and extreme growth for case 8 results in 
synthetic growth being slightly over-predicted. 

Tests demonstrated that applying an origin station normalisation did not improve the 
performance of the pivoting process, and therefore an origin station normalisation has not 
been implemented. 

A total mode normalisation step has been applied so that the percentage synthetic growth 
in total rail trips is matched exactly at the end of the pivoting process. 

6.3 Recommendations 

It is recommended that BTS implements the enhanced pivoting system for use in the 
STM, as it has been demonstrated to give significant improvements in performance 
relative to the original pivoting process. 

All of the tests presented in this report have been run using matrices generated from the 
existing version of the STM. When the new version of the STM is operational in Sydney it 
is recommended that the analysis presented in this report for the enhanced pivoting 
process is repeated using forecasts from the new version of the STM. Particular issues to 
examine when the analysis is repeated are the performance of the pivoting process for bus, 
where it is hoped an improved correspondence between synthetic base and base matrices 
will be achieved, and a review of the performance of the process for the problematic ferry 
mode. 



 

39 

 

REFERENCES 





 

41 

Reference list 

Daly, A., J. Fox and B. Patruni (2011) “Pivoting in Travel Demand Models”, paper 
presented at European Transport Conference, Glasgow. 

Daly, A., J. Fox and J. G. Tuinenga (2005) “Pivot-Point Procedures in Practical Travel 
Demand Forecasting”, European Congress of the Regional Science Association, 
Amsterdam.Manheim, M. L. (1979) Fundamentals of Transportation System Analysis, 
Cambridge, Mass: MIT Press. 

 
 





 

43 

APPENDICES





 

45 

Appendix A: Mode normalisation with a utility 
maximisation approach 

Calculations within a utility maximisation approach 

Following Daly (1987) we define a tree logit model using the RUM1 (“non-normalised”) 
specification, which is used in the STM models. The specification depends on a tree 
function that gives the ancestor node ݐ௝ for each node ݆ in the model. However, the 
notation used here is changed to simplify the discussion of pivoting. 

A tree logit model (RUM1) is defined recursively by the following 

 log ௞|௧ೖ݌ = ௞ܸ − log∑ exp	 ௛ܸ௧೓ୀ௧ೖ     (1) 

where ܸ gives the measured utility for each alternative. 

For composite alternatives, i.e. those that are the ancestor of some other node, utility is 
transmitted through the ‘logsum’ 

 ௝ܸ = ௝ߠ log∑ exp ௛ܸ௧೓ୀ௝       (2) 

where 0 < ௝ߠ ≤ 1. 

The intention is to set up a pivoted model, with the same form as the original model but 
with utility functions amended. Terms in this model are indicated in the equations by a 
superscript, i.e. ݌∗ and ܸ∗, so we get  

 log ∗௞|௧ೖ݌ = ௞ܸ∗ − log∑ exp	 ௛ܸ∗௧೓ୀ௧ೖ     (3) 

 ௝ܸ∗ = ௝ߠ log∑ exp ௛ܸ∗௧೓ୀ௝      (4) 

The amendment to the utility function is required to serve two functions: 

 It must be consistent with the utility transmission (4). 

 It must give the pivoting that is required at each level of the tree. 

It turns out that the amendment that is needed is: 

 ௛ܸ∗ = ௛ܸ + ௛ܭ +  ௧೓      (5)ܮ

where ܭ௛ = log ቀ௕೓௣೓ቁ; ܾ௛ is the observed fraction of total trips choosing alternative ℎ (note that this is 
the marginal fraction, not conditional on ݐ௛); 
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௚ܮ = ∑ ௜௜∈஺೒ܭ ሺ1 − ௜ሻߠ ∏ ఏ೗೗∈ಲ೟೔∏ ఏ೗೗∈ಲ೒ ,௚ is the set of ancestor nodes of ݃: ቄ݃ܣ ; ,௚ݐ	 ,௧೒ݐ	 	 … ௜ݐ	|	݅ =  ቅ; note that thisݎ
includes the node itself but excludes the root ݎ of the tree. 

The effect of the fraction in ܮ௚ is to divide by the ߠ parameters for all nodes in the 
ancestor set from ݃ to ݅ inclusive. 

Because of the way it is defined, ܮ௧೓ in (5) involves only ݐ௛ and higher nodes, so when we 
calculate the conditional probability for ℎ that term disappears and the probabilities (using 
equations 3 and 5) are determined by ሺܸ +  ሻ onlyܭ

 log ∗௛|௧೓݌ = ሺ ௛ܸ + ௛ሻܭ − log∑ expሺ ௞ܸ + ௞ሻ௧ೖୀ௧೓ܭ   (6) 

Similarly, when we apply the recursive formula (4) to get the utility for composite 
alternative ݆, ܮ௝ is constant and can be taken outside the logsum as a constant to obtain 

 ௝ܸ∗ = ௝ߠ log∑ exp ௛ܸ∗௧೓ୀ௝  

 		 = ௝ߠ log∑ exp൫ ௛ܸ + ௛ܭ + ௝൯௧೓ୀ௝ܮ  

 		 = ௝ܮ௝ߠ + ௝ߠ log∑ expሺ ௛ܸ + ௛ሻ௧೓ୀ௝ܭ     (7) 

Moreover, we can calculate the first term in (7) further, cancelling out the factor ߠ௝ 
௝ܮ௝ߠ  = ௝ߠ ∑ ௜௜∈஺ೕܭ ሺ1 − ௜ሻߠ ∏ ఏ೗೗∈ಲ೟೔∏ ఏ೗೗∈ಲೕ   

   = ௝൫1ܭ − ௝൯ߠ + ∑ ௜௜∈஺೟ೕܭ ሺ1 − ௜ሻߠ ∏ ఏ೗೗∈೟೔∏ ఏ೗೗∈ಲ೟ೕ   

   = ௝൫1ܭ − ௝൯ߠ +  ௧ೕ     (8)ܮ

The second term in (7) can also be calculated: 

௝ߠ  log∑ expሺ ௛ܸ + ௛ሻ௧೓ୀ௝ܭ = ௝ߠ log∑ ቀ௕೓௣೓ቁ exp ௛ܸ௧೓ୀ௝   (9) 

Now if ݐ௛ = ݆, we can use (1) and (2) to calculate 

௛݌  = .௝݌ ௛|௝݌ = .௝݌ ୣ୶୮௏೓∑ ୣ୶୮௏ೖ೟ೖసೕ = .௝݌ ୣ୶୮௏೓ୣ୶୮ೇೕഇೕ    (10) 

so we can substitute in (9) to obtain 

௝ߠ  log∑ expሺ ௛ܸ + ௛ሻ௧೓ୀ௝ܭ = ௝ߠ log∑ ቌ௕೓.ୣ୶୮ೇೕഇೕ௣ೕ ቍ௧೓ୀ௝  

     = ௝ߠ log ൬exp ௏ೕఏೕ൰ + .௝ߠ log∑ ൬௕೓௣ೕ൰௧೓ୀ௝  

     = ௝ܸ + ௝ߠ log ൬௕ೕ௣ೕ൰ = ௝ܸ +  ௝ (11)ܭ௝ߠ

because ∑ ܾ௛ =௧೓ୀ௝ ௝ܾ. 
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Given the results (8) and (11) we are now in a position to simplify equation (7) 

 ௝ܸ∗ = ௝ܸ + ௝ܭ +  ௧ೕ      (12)ܮ

We note that equation (5) reappears at the next higher level, indicating that the change to 
the model is carried through to the next level and hence to all levels. That is, we satisfy the 
first requirement of consistency in the amended model. 

In equation (6) we noted that the marginal probabilities at each level in the tree are 
determined by ሺܸ +  ሻ only. We can then obtain the ratio of probabilities for twoܭ
alternatives in the same nest: 

 ௣ೖ∗௣೓∗ = ୣ୶୮௏ೖୣ୶୮௏೓ . ୣ୶୮௄ೖୣ୶୮௄೓ = ୮ౡ୮౞ . ୠౡ ୮ౡ⁄ୠ౞ ୮౞⁄ = ୠౡୠ౞    (13) 

That is, the formulation of ܭ ensures we obtain the observed proportions at each level in 
the model. Provided the total number of trips is correct, this implies that we obtain the 
correct number for each alternative. The utility correction (5) thus satisfies both the 
requirements to obtain a pivoted model. 

Extending to multiple segments 

The above formulae apply for any single segment. For pivoting we require to aggregate 
over segments (person types, purposes) and to apply the correction factors to the aggregate 
trips. In this case we obtain a more general version of equation (13) for segment ݏ 

 
௣ೕೞ∗௣೓ೞ∗ = ୮ౠ౩୮౞౩ . ୠౠ ୮ౠ⁄ୠ౞ ୮౞⁄ = ୠౠ౩ୠ౞౩      (14) 

where b୨ୱ = b୨. p୨ୱ p୨⁄ , which is the base matrix multiplied by the fraction of flow 
indicated by the model. 

This fraction of flow appears to be the best indication we can get of the fraction of base 
flow. Moreover, adding up over the segments ݏ gets back to the total base matrix, as 
required. 

What does this mean? 

The lengthy calculations above show that it is possible to make a correction to the utility 
function that allows a tree logit model to match exactly the observed choice proportions. If 
the total number of trips is correct, of course, this means we match the total observed 
numbers. The utility correction propagates through the tree, so that it can be added at the 
bottom level alone and the effect will operate at all levels automatically. 

In practice, the model will be run for the base year and the calculations ൫ܭ௛ +  ௧೓൯ madeܮ
for all the elementary nodes. Adding these to the utilities will then ensure that the model 
exactly reproduces the base year observations. Changes to the utilities will then change the 
forecasts as usual. We can note that the utility correction is entirely fixed, once the base 
case has been run. The additions to utility are constants and the utility-maximising 
character of the model is maintained. 
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Dealing with all eight cases 

The formulae above note are possible for cases 8n and 7 only because these are the only 
places we can calculate K=log(B/Sb). Suppose for cases 1–6 we set K=0. Then we will get 
the right answer for cases 1–3, 7 and 8n. For the other cases: 

 Cases 5 and 6 are forecast consistently with utility because they just add B to Sf 
and this is like assuming there is some fixed demand – captive, perhaps. 

 Case 8e is forecast consistently with utility if B>Sb, because we are then just taking 
a positive demand X2*(B/Sb–1) as being fixed. 
 

Case 4n, which is just set to 0, is also consistent with utility theory but the problem here is 
that the switch point between case 4n and case 4e depends on Sf and may therefore differ 
between forecast scenarios. In this case, and in case 8e for B<Sb, there is no correct 
formula, because there is no utility function that will give the results we need, which are 
linear in Sf but with a negative offset. For this reason there can be no guarantee that we get 
utility-consistent results. 

So a proposal would be to make a two-step pivot. First, do the utility-based pivot, as set 
out above, with K=0 for cases 1–6. This will give us Sf*, which is utility-consistent for 
cases 1–3, 5–7 and 8n. For cases 4 and 8e, we then do a second-stage pivot, using Sf*, to 
get the final result. For cases 5 and 6 we just have to add B. 

Dealing with OD matrices 

Some base matrices are defined on an OD basis, rather than on a PA or tour basis, though 
this does not appear to be a significant problem in the Sydney case. The problem with 
these matrices is that it is difficult to apply the notion of utility maximisation, because we 
do not know whether the traveller is choosing the origin or the destination.6 

The most obvious approach, which seems to be consistent with other procedures discussed 
in this note, is to allocate OD matrices to PA in the proportions indicated by the model. 
However, this seems rather onerous. But if we calculate a matrix split in this way, the 
‘observed’ number of tours in one direction would be given by 

ଵܤ  = ܤ ௌ௕భௌ௕భାௌ௕మ 
with the superscripts indicating the direction of the tours and B being the base trip matrix, 
which is assumed to be symmetric. If we then make a case 8n pivot, for tours in both 
directions, we would obtain: 

 ܲ = ଵܤ ௌ௙భௌ௕భ + ଶܤ ௌ௙మௌ௕మ = ܤ ௌ௙భାௌ௙మௌ௕భାௌ௕మ 
which is exactly what we would obtain if we followed a conventional procedure of 
calculating the synthetic trips, then making the pivot.  

                                                      
6 There may also be a problem when dealing with detours (non-home-based) because again we do not 
necessarily know which trip end is chosen. 
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Practical procedures 

Two alternative procedures seem to be available. 

1. Using the utility formulae directly 

To apply the note directly we would calculate a matrix of K+L, setting K=0 for cases 1–6, 
then apply the corrections. Then we make the changes for cases 4, 5, 6 and 8e outside the 
TRAVDEM. Some thought is needed to do this efficiently. 

2. Normalisation 

What the note shows is that it is possible to set up a model that matches the base 
observations exactly and that is consistent with utility. This can be achieved equivalently 
by factoring or by adding utility (which is the more obvious suggestion in the note). For 
factoring, we have to work top-down to ensure we have achieved consistency. 

This procedure can be compared with the normalisation we have previously done. The 
main objective of normalisation is to ensure that after factoring the cells, we return to the 
row or other total we expected. The point we seem to have missed is that the normalisation 
at different levels has to be consistent. For example, in the UK Long Distance Model, we 
tested mode then row normalisation before deciding that row then mode normalisation 
was best because it minimised inconsistency. But we do not seem to have tried normalising 
the rows (lower level) to give the total given by the normalised mode pivoting. 

Moreover, if we consider what happens when we change the utilities for forecasting, based 
on equation (13) 

 ௣ೖభ௣೓భ = ୣ୶୮ሺ௏ೖା∆௏ೖሻୣ୶୮ሺ௏೓ା∆௏೓ሻ . ୣ୶୮௄ೖୣ୶୮௄೓ = ௣ೖ∗௣೓∗ . ୣ୶୮ሺ∆௏ೖሻୣ୶୮ሺ∆௏೓ሻ    (15) 

where ݌௞ଵ is the forecast proportion choosing ݇ and 

 ∆ ௞ܸ is the change in utility of alternative ݇. 

which is exactly the formulation used in incremental models, e.g. in the WebTAG advice 
(2009). 
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