Are `Webographic' or Attitudinal Questions Useful for Adjusting Estimates from Web Surveys Using Propensity Scoring?

MATTHIAS SCHONLAU
ARTHUR VAN SOEST
ARIE KAPTEYN

WR-506
June 2007

This paper series made possible by the NIA funded RAND Center for the Study of Aging (P30AG012815) and the NICHD funded RAND Population Research Center (R24HD050906).
Are 'Webographic' or attitudinal questions useful for adjusting estimates from Web surveys using propensity scoring?

Matthias Schonlau¹, Arthur van Soest², Arie Kapteyn¹

¹RAND
²RAND and Tilburg University

Corresponding author: Matthias Schonlau, RAND, 4570 Fifth Avenue, Suite 600, Pittsburgh, PA, 15213
matt@rand.org

Abstract

Inference from Web surveys may be affected by non-random selection of Web survey participants. One approach to reduce selection bias is to use propensity scores and a parallel phone survey. This approach uses demographic and additional so-called Webographic or lifestyle variables to balance observed differences between Web survey respondents and phone survey respondents. Here we investigate some of the Webographic questions used by Harris Interactive, a commercial company specializing in Web surveys. Our Webographic questions include choice of activities such as reading, sports and traveling and perceptions about what would constitute a violation of privacy. We use data from an existing probability sample of respondents over 40 who are interviewed over the phone, and a corresponding sample of respondents interviewed over the Web. We find that Webographic questions differentiate between on and offline populations differently than demographic questions. In general, propensity score adjustment of variables in the Web survey works quite well for a number of variables of interest (including home ownership and labor force participation). For two outcomes, (having emotional problems and often experiencing pain) the process of adjusting for demographic variables leads to the discovery of an instance of Simpson’s paradox, implying a differential mode effect or differential selection. We interpret this mainly as the result of a mode effect, where sensitive questions are more likely to receive a positive response over the Internet than over the phone.

Key words: propensity scoring, Web survey, selection bias, Webographic variables, lifestyle variables, Simpson’s paradox
1. Introduction

Demographic questions are asked to understand whether important segments of the population respond differently. They frequently do. To the extent that some segments of the population (e.g. racial/ethnic groups) are underrepresented in the survey, nonresponse or post stratification weights are introduced to correct for the imbalance. The weighted sample is then representative of the population with respect to those demographic variables.

Because fewer people have access to the Web than to a phone, we expect Web survey respondents to be less representative of the general population than phone survey respondents. Moreover, many Web surveys form convenience samples rather than probability samples, which probably further exacerbates imbalances.

Because Web survey respondents may be less representative, it is reasonable to look for additional imbalances that are not already captured by demographic variables. Harris Interactive, a commercial company specializing in Web surveys, has experimented with scores of additional so-called Webographic questions. Other researchers call them also “lifestyle” (Varedian and Forsman, 2003) or “attitudinal” (Lee, 2004, 2006) questions. These questions supposedly capture the differences between the online and the off-line populations. Harris Interactive does not publish the questions it uses. However, Webographic questions can easily be detected in Harris Interactive surveys: they are questions that are unrelated to the survey topic, usually near the end of a survey. Examples of these questions, which are also used in the analysis in this paper, are given in Appendix A.

It is not clear to what extent phone survey respondents and Web survey respondents really differ with respect to Webographic questions or whether differences disappear after adjusting for differences in the distribution of demographic variables. It is also not clear how well the adjustment using webographic questions work for various outcomes. In section 2 we provide a brief review of the empirical literature on uses of propensity scoring for survey reweighting. Section 3 contains details on the weighting method for propensity scoring that we use. Sections 4 and 5 contain the results and a discussion.

2. Background

Propensity scoring was originally developed to draw inferences in observational studies (Rosenbaum and Rubin, 1983). To adjust for nonresponse bias one needs to model the probability of response. Respondents are assigned weights equal to the inverse estimated probability of response, \(1/\hat{p} \). This scheme gives greater weight to respondents that are more similar to non-respondents (Little and Rubin, 1987). Existing applications include the following. Smith et al. (2000) adjust for bias due to non-response by constructing strata from propensity scores. They estimate the percent of children vaccinated with four critical vaccines. Using information about responding and non-responding providers they construct 5 propensity strata and adjust the weights within each cell. Duncan and Stasny
adjust for bias due to non-response in a telephone survey by arguing that non-
responding households are similar to transient households – households with interrupted
telephone service. They compute the propensity of a household being transient and then
assign transient households higher weights based on propensity scores.

DeVries et al (2005) use propensity scoring to assess the mode effect between a phone
and a mail survey for the CAHPS hospital survey. They use variables from administrative
data as covariates for the logistic regression that models the probability of being in a
particular mode.

Several authors (Isaksson and Forsman 2004, Lee, 2006, Schonlau et al. 2004a, 2004b,
Varidien and Forsman, 2003) use propensity scoring to reduce bias of estimates based on
convenience samples such as Web surveys. To adjust the estimates in this way requires a
reference survey; often a Random Digit Dialing (RDD) phone survey is used for this
purpose. Propensity scoring is applied to the combined sample of the Web survey and the
reference survey. The phone and the Web survey ask some of the same questions that are
used as covariates in the logistic regression. These questions may include Webographic
or lifestyle questions that capture differences between the online and offline population.

Two important questions arise: (1) Does the propensity score adjustment reduce or
eliminate the selection bias? And (2) what questions should be asked in both the Web
survey and the reference survey?

The literature seems to suggest that the adjustment almost always reduces the bias but
does not necessarily eliminate it (e.g., Lee, 2006). Schonlau et al. (2004a) compare
estimates from an RDD phone survey with propensity-adjusted estimates from a Web
survey conducted by Harris Interactive. They find that the phone survey estimates were
not significantly different from the adjusted Web survey estimates for 8 out of 37
questions investigated.

Schonlau et al. (2004b) analyze data from the 2002 Health and Retirement Study (HRS),
a CAPI/CATI survey representative for the US 50+ population and their spouses. A
subset of HRS respondents subsequently also responded to a Web survey. Using
demographic variables and some other common variables, Schonlau et al. are able to
adjust for selectivity in many but not in all cases. In particular, the percentage of
households owning stock, predicted based on the Web survey, remained significantly
different from the estimate based on the 2002 HRS.

Varedian and Forsman (2003) experiment with propensity score weighting in the context
of a marketing survey about the use of hygiene products and attitudes toward local banks.
They find that none of the weighting schemes had pronounced effects on any of their
estimates.

Isaksson and Forsman (2003) study political polls for the 2002 election in Sweden. They
find that propensity adjustment based on a set of lifestyle questions reduces the absolute
differences with the actual election results more than the usual post stratification by sex,
age, class, and dwelling (big-city vs. not). Moreover, adding these four variables to the propensity adjustment did not appreciably improve the bias reduction.

The second question is what questions should be used for the propensity adjustment. All researchers adjust for differences in the distributions of some demographic variables. Schonlau et al. (2004b) find that at a minimum set of demographic variables are needed to adjust for selection bias and also find self assessed health status useful. In addition to age, gender and region (in Sweden), Varedian and Forsman (2003) also include lifestyle questions that are meant to capture a respondent’s “modernity”. Lee (2006) uses self-rated social class, employment status, political party affiliation, having a religion, and opinion toward ethnic minorities as variables for propensity scoring. Further, Lee finds that this particular set of non-demographic variables makes little difference. She points out that most of her non-demographic variables are not significantly related to the two outcomes, “warm feeling towards blacks” and the proportion of people voting in the 2000 election.

While Harris Interactive does publish successful applications (Taylor et al., 2001), the company does not publish its research on the use of this method or which Webographic questions are valuable. Presumably, however, Webographic questions that continue to be used are useful. The secrecy leads to oblique references in the literature. For example, Danielsson (2004) reports “In some preliminary papers from Harris Interactive (not to be quoted) the effect of using propensity scores in Web-surveys are reported and the results are surprisingly good (but the method used is not clearly described).” The general propensity scoring method Harris Interactive used, though without knowledge of specific Webographic questions, was described in Schonlau et al (2004).

3. Method

We consider the combined sample of Web survey respondents and phone survey respondents. The propensity score is the conditional probability that the \(i^{th}\) respondent is a Web survey respondent in the combined sample:

\[
p_i = P(Z_i = 1 | X_i)
\]

where \(Z_i\) is an indicator variable for membership in the Web survey. The covariates \(X_i\) contain information that is collected in both the phone survey and the Web survey. In this paper we explore the value of answers to demographic and Webographic questions as covariates. In practice the propensity score is often estimated via logistic regression.

The propensity score is a balancing score, that is, respondents in both surveys with the same propensity score have the same distribution of \(X\) (Rosenbaum and Rubin, 1983). This is a theoretical property. In practice, \(p(X)\) is estimated, usually with a logit model or another parametric model involving functional form assumptions. One can test for lack of balance in \(X\), for example, by testing whether the means of covariates after the propensity adjustment differ in the two surveys. If they do, this points at inappropriate adjustment, e.g. due to misspecification of the assumed functional form of \(p(X)\).
For the inference to work for a variable of interest Y we must assume strong ignorability. Let Y_i be the response to a particular question Y of an individual to a Web survey and Y_0 the response of the same individual to the same question in the phone survey. The two answers may differ because of a mode effect. Note that each respondent only responds to one survey and therefore only one of the two outcomes is observed. Membership of the Web survey, Z, is defined to be strongly ignorable if, conditional on X, (Y_0, Y_i) and Z are independent. Strong ignorability implies that there are no unobserved questions/variables that explain selectivity into the Web sample that are also related to the question of interest Y. After propensity adjusting for selectivity we can test whether the adjusted sample means of Y_i in the Web survey and Y_0 in the phone survey differ. This is a joint test of no mode effects ($Y_i = Y_0$) and strong ignorability.

We conducted a phone survey (Spring 2004) and a Web survey (Fall 2003) containing the same questions; 516 respondents completed the phone survey and 1128 the Web survey. Respondents of the Internet survey are participants of the American Life Panel (ALP). The respondents in the ALP are recruited from among individuals age 40 and older who are respondents to the Monthly Survey (MS) of the University of Michigan's Survey Research Center (SRC). The MS is the leading consumer sentiment survey that incorporates the long-standing Survey of Consumer Attitudes (SCA) and produces, among others, the widely used Index of Consumer Expectations. Each month, the MS interviews approximately 500 households, of which 300 households are a random-digit-dial (RDD) sample and 200 are re-interviewed from the RDD sample surveyed six months previously. At the end of the re-interview respondents who meet the age criterion are asked to join the phone sample or the ALP.

As is clear from this description, building up the two samples took some time. Initially respondents for the phone sample were recruited in a way that made them representative of the population over 40. That is, a substantial part of the respondents in the phone sample did have Internet access. It also implied that many respondents without Internet access were not used in the phone sample, because to keep the phone sample representative and to recruit enough respondents for the Internet sample the number of respondents with Internet access became the bottleneck. It turned out that this led to a slower than expected build-up of the samples. To speed up the process of building the sample it was then decided to allocate all willing respondents with Internet access to the Internet sample and to fill the telephone sample primarily with willing respondents without Internet access. As a result of this, the difference between the phone sample and the Internet sample is bigger than it would have been, if the phone sample were fully representative of the population over 40. This increases the challenge of reweighting such that the Internet sample can reproduce variable distributions observed in the phone sample.

1 The description is correct for the period over which the data used in this paper were collected. Since the Fall of 2006, respondents over age 18 are eligible to join the ALP; moreover respondents without Internet access are given the opportunity to join the ALP, in which case they are provided with Internet access by means of a Web TV (also called Internet player).
It is worth noting furthermore that by concentrating on older ages, the challenge for Web surveys to produce population representative measures is increased greatly. Internet access falls sharply with age, so Web surveys cover a relatively smaller part of the population (Cheeseman Day et al, 2005).

Our logistic regression model to compute the propensity score includes the following demographic variables: gender, log10 income, (log10 income) squared, age/10, education (less than high school, high school but less than college, college or more), primary language is English, born in the US, and self assessed health status (excellent and very good [combined], good, fair, poor), coded as indicator variables. Self assessed health status was included because we previously found it to be an important predictor (Schonlau et al, 2004b). Even though health status is not a demographic variable, we refer to the set of variables as demographic variables to avoid overly cumbersome language. Dummy variables for whether the primary language is English and whether the respondent was born in the US are included as well. Race /ethnicity is not available.

Webographic variables fall into one of four categories which we label attitudinal variables, factual variables, privacy variables and variables related to knowing gay people. The questions themselves are shown in Appendix A. Some of the questions may appear unusual, but to differentiate the online and the offline population other than through demographics unusual questions may be called for. These questions continue to be used by Harris Interactive.

Propensity scores can be used in different ways. We use the inverse propensity scores as weights (Rosenbaum, 1987). One further subtle correction is needed to the weights, since in our case propensity scores refer to a population of Web and phone survey respondents combined. We are interested in estimates for the phone survey respondents. Therefore we multiply the weights with the probability of being in the phone survey \((1 - p_i) \).

Specifically, for the Web survey estimates we use the weights \(w_i = (1 - p_i) / p_i \) if respondent \(i \) is a Web survey respondent. Because the phone survey is the reference survey, the weights are not affected by the propensity score: \(w_i = (1 - p_i) / (1 - p_i) = 1 \) if the respondent is a phone survey respondent. This argument follows Hirano and Imbens (2001, Section 2.5) and Hirano et al. (2003, Section 4.3).

We test for evidence of lack of balance by testing for differences in means. Because significance is affected by the use of unequal weights we also investigate reduction in effect sizes (Cohen, 1988). The effect size for variable \(k \) is defined as
\[
(\mu_{k}^{\text{web}} - \mu_{k}^{\text{phone}}) / \text{stddev}_k
\]
where the standard deviation is computed from the pooled data and where \(\mu_{k}^{\text{web}} \) and \(\mu_{k}^{\text{phone}} \) are the sample means in the two samples. Comparing effect sizes before and after adjustment indicates whether standardized differences in means are reduced.

We investigate adjustments for several outcomes \(Y \): home ownership, whether or not the respondent is working, has a stressful job, a doctor has ever told the respondent he/she has an emotional or psychological problem, whether he or she often experiences pain, as well as the respondent’s average daily number of servings of fruit and vegetables, the
number of hours a week with moderate activity, and the number of days on which the
respondent watched news in the last 30 days.

For each outcome we compute phone survey estimates and unadjusted and adjusted Web
survey estimates with varying sets of adjusting variables X. Adjustments are based on
demographic variables only, Webographic variables only, or on both sets of variables.
We also explore how leaving some Webographic variables out of X affects the estimates.
Specifically, different groups of variables (factual, attitudinal, perception of violation of
privacy, knowing anyone who is gay) are left out alternatively to study how the adjusted
estimates change.

4. Results

Table 1 explores the balance of the covariates used in the propensity scores by presenting
means in the phone survey, in the Web survey, as well as means of the Web survey
estimates adjusted for demographics only and adjusted for both demographic and
Webographic variables. Table 1 also gives effect sizes before the adjustment and after the
adjustment for demographic and Webographic variables.

Web survey respondents are more likely to take chances and to feel alone. They travel
more often, read a book more often and participate in sport more often. They perceive
violations of privacy more often, in particular for airport search and credit card storage.
They are more likely to know someone who is gay.

If the adjustment works, that is, if balance is achieved, then the adjusted estimates should
not significantly differ from the phone survey estimates. Estimates corresponding to
differences significant at $\alpha = 0.05$ are shaded. The phone survey estimates differ
significantly from many of the unadjusted Web survey estimates. After adjusting for
demographic variables the demographic estimates are no longer significantly different.
However, several imbalances among the Webographic variables remain. No significant
imbalances remain after adjusting for both sets of variables. Because the use of the
propensity weights inflates standard errors this may be artificial. Hence we also want to
see a reduced effect size. The average effect size across all variables is reduced from 0.20
to 0.03.

Table 2 provides several estimates of the prevalence or means of a number of variables of
interest: CATI estimates, unadjusted Web estimates, adjusted Web estimates using only
the demographic variables, and Web estimates adjusted using both the demographic and
the Webographic variables. Web based estimates that differ significantly ($\alpha = 0.05$) from
the phone survey estimates are shaded. About half of the unadjusted Web estimates do
not differ significantly from the phone estimates. Estimates that differ imply that Web
survey respondents are more likely to own a house, to be working, to consider their job
stressful, and to watch slightly fewer news programs.

Adjustments tend to reduce discrepancies between Web and phone, but not always. For
all but two variables (“emotional/psychological problem” and “often experiences pain”)
adding the Webographic variables either reduces discrepancies – rendering the Web based estimate statistically insignificantly different from the phone estimate - or does not affect the significance of an already insignificantly different estimate. The adjustment for “working” works only when the demographic variables are included. Most - but not all - of that adjustment is due to the respondent’s age. The estimate of homeownership requires both demographic and Webographic variables to achieve insignificance. None of the adjustments substantially change the estimates for the number of fruit servings and hours a week of moderate activity.

Adjusting on the basis of demographic variables for the two remaining outcomes, “emotional/ psychological problem” and “often experiences pain” (either with or without Webographic variables) increases the discrepancy. We explain this in more detail by concentrating on just one of the variables, self assessed health status. Table 3 gives the percentage of respondents who reported emotional or psychological problems by self assessed health status for both phone and Web survey respondents.

In each category the percentage of Web survey respondents reporting emotional / psychological problems is higher, by 5.1%-points to 23.6%-points. However, the combined mean difference is only 2.9%. This phenomenon is known as Simpson’s paradox (Simpson, 1951) and is due to the fact that the distribution of self assessed health status is very different for Web and phone respondents. Specifically, relatively fewer Web respondents report to be in fair or poor health.

The combined mean difference is the difference between the unadjusted Web survey and the phone survey. The propensity adjustment assigns Web respondents with poor or fair health a greater weight because they are under represented, thereby exacerbating rather than reducing differences.

We see at least two possible explanations for these differences and both are mode effects. The first one would be due to differential recency effects over the phone and over the Internet. Particularly among elderly respondents, recency effects (a tendency to recall the last item mentioned in a list) may be relatively prominent over the phone: Since “fair” and “poor” are the last two items of the five point health scale, these may be more likely to be chosen in a phone interview than in a Web interview, where recency effects are less likely. This would exaggerate the health differential between Internet respondents and phone respondents. Secondly, social desirability may make a respondent less inclined to admit to emotional and psychological problems in a phone interview than in a self-administered interview over the Internet. Both effects would work in the direction of generating Simpson’s paradox. To a perhaps somewhat lesser extent a similar explanation may apply to the other outcome, “often experiences pain”.

For home ownership the adjustment works only when Webographic variables are included. Table 4 explores how estimates are affected by removing subsets of the Webographic variables (and health status). For example, to explore the effect of the privacy questions, we remove the privacy questions from the full set of variables to see how the estimates change. For homeownership removing either the privacy questions or
health status would result in an estimate significantly different from the phone survey estimate. We also explored the variable working; none of the subsets of variables affects the estimate much.

5. Discussion

Demographic variables differentiate between on and offline populations differently than Webographic variables because adjusting for demographic variables does not balance Webographic variables. The most imbalanced Webographic variables after adjusting for demographic variables are: (not) knowing anyone who is gay, perceived privacy violation by airport searches, storage of credit card information and aids screening, having read a book in the last month, having traveled in the last month and taking chances. If one had to choose a subset of Webographic questions because of cost or other constraints (e.g. phone interview time) the variables that are most imbalanced after the adjustment for demographic variables are primary candidates. Among the Webographic questions in our study privacy appears to affect the estimates more than other Webographic questions.

The question about knowing gay persons is somewhat unusual. For respondents who wonder why the question is being asked Harris Interactive now has an html link to the following text:

“Collecting data from all respondents on this question is important so that we can better and more reliably report differences and similarities between people of different sexual orientations. We understand that you might be concerned about sharing this information. Please be assured that the responses you provide are kept completely confidential. Any identifying information will be separated from your answers. Results are reported using the average, or pooled answers to the questions, instead of the responses of any one individual. “

Harris interactive uses a similar text link for some other questions including income.

Because Webographic variables appear to be useful in some cases there seems to be no downside to adding the variables when they are available. This finding is also supported in the propensity scoring literature. Rubin and Thomas (1996) advocate including all available covariates into the propensity model because any omitted variable may lead to bias. In a simulation study Drake (1993) shows that the propensity method is relatively robust against misspecifying the propensity score models (e.g. adding a quadratic term).

The discovery of instances of Simpson’s paradox for two of the outcome variables is a reminder that the adjustment can only work when there is no mode effect and strong ignorability holds for propensity scoring. If our suspicion that social desirability plays a role in explaining the differences is correct the implication is not necessarily that the Web leads to unrepresentative results, but rather that for certain topics the Web may be better suited than phone interviews.
It is unlikely that one set of Webographic variables can remove bias for all outcomes. Future work may need to concentrate on establishing variables that work for common outcomes in different substantive areas.
Appendix A: Webographic questions

The questions were first used by Harris Interactive with the following differences: Harris Interactive asks the attitudinal questions on a Likert scale. The last response option in the question about violation of privacy (Electronic storage of credit card numbers) was added. For the same questions a response option “none of these” was removed.

Attitudinal Questions
Do you often feel alone? (yes/no)
Are you eager to learn new things? (yes/no)
Do you take chances? (yes/no)

Factual Questions
In the last month have you traveled? (yes/no)
In the last month have you participated in a team or individual sport? (yes/no)
In the last month have you read a book? (yes/no)

Privacy
Which of these practices, if any, do you consider to be a serious violation of privacy?

Please check all that apply.
1. Thorough searches at airport checkpoints, based on visual profiles
2. The use of programs such as 'cookies' to track what an individual does on the Internet
3. Unsolicited phone calls for the purpose of selling products or services
4. Screening of employees for AIDS
5. Electronic storage of credit card numbers by Internet stores

Know anyone who is gay
Do you know anyone who is gay, lesbian, bisexual, or transgender?

Please check all that apply.
1. Yes, a family member
2. Yes, a close personal friend
3. Yes, a co-worker
4. Yes, a friend or acquaintance (not a co-worker)
5. Yes, another person not mentioned
6. No

Acknowledgement
Support for this research comes from grant R01AG20717 from the National Institute of Aging of the U.S. National Institutes to RAND (Arie Kapteyn, P.I.) and from the University of Michigan’s Survey Research Center (Robert J Willis, P.I.).

References

<table>
<thead>
<tr>
<th></th>
<th>Phone</th>
<th>Web</th>
<th>Effect sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted</td>
<td>Adjusted (Demographic)</td>
<td>Adjusted (demographic and Webographic)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>39.1%</td>
<td>46.9%</td>
<td>39.7%</td>
</tr>
<tr>
<td>Language not English</td>
<td>6.2%</td>
<td>3.0%</td>
<td>4.4%</td>
</tr>
<tr>
<td>log hh income</td>
<td>4.3</td>
<td>4.8</td>
<td>4.2</td>
</tr>
<tr>
<td>log hh income squared</td>
<td>19.1</td>
<td>23.2</td>
<td>18.6</td>
</tr>
<tr>
<td>Age</td>
<td>64.6</td>
<td>54.0</td>
<td>60.8</td>
</tr>
<tr>
<td>Born in the US</td>
<td>93.6%</td>
<td>91.4%</td>
<td>94.5%</td>
</tr>
<tr>
<td>Education</td>
<td>61.1%</td>
<td>21.3%</td>
<td>61.8%</td>
</tr>
<tr>
<td>>=4 yr college</td>
<td>5.4%</td>
<td>28.0%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Self assessed health status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>29.6%</td>
<td>27.0%</td>
<td>29.5%</td>
</tr>
<tr>
<td>Fair</td>
<td>23.2%</td>
<td>10.0%</td>
<td>26.0%</td>
</tr>
<tr>
<td>Poor</td>
<td>11.5%</td>
<td>1.9%</td>
<td>10.6%</td>
</tr>
<tr>
<td>Attitudinal Questions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eager to learn</td>
<td>57.1%</td>
<td>60.4%</td>
<td>59.6%</td>
</tr>
<tr>
<td>Takes chances</td>
<td>53.9%</td>
<td>60.9%</td>
<td>61.1%</td>
</tr>
<tr>
<td>Often feel alone</td>
<td>54.1%</td>
<td>60.6%</td>
<td>58.4%</td>
</tr>
<tr>
<td>In the last month have you..</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel?</td>
<td>29.8%</td>
<td>53.5%</td>
<td>44.2%</td>
</tr>
<tr>
<td>Participated in sport?</td>
<td>11.7%</td>
<td>25.5%</td>
<td>17.0%</td>
</tr>
<tr>
<td>Read a book?</td>
<td>63.2%</td>
<td>77.5%</td>
<td>76.7%</td>
</tr>
<tr>
<td>Violation of Privacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport search</td>
<td>28.9%</td>
<td>18.4%</td>
<td>14.5%</td>
</tr>
<tr>
<td>Cookies</td>
<td>72.1%</td>
<td>71.9%</td>
<td>65.4%</td>
</tr>
<tr>
<td>Phone calls</td>
<td>70.5%</td>
<td>72.6%</td>
<td>77.0%</td>
</tr>
<tr>
<td>Aids screening</td>
<td>38.8%</td>
<td>31.6%</td>
<td>25.5%</td>
</tr>
<tr>
<td>Credit card storage</td>
<td>84.3%</td>
<td>65.3%</td>
<td>71.9%</td>
</tr>
<tr>
<td>Know anyone who is gay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>40.4%</td>
<td>19.7%</td>
<td>28.2%</td>
</tr>
<tr>
<td>Family</td>
<td>19.5%</td>
<td>22.2%</td>
<td>19.5%</td>
</tr>
<tr>
<td>Close friend</td>
<td>21.6%</td>
<td>18.5%</td>
<td>13.9%</td>
</tr>
<tr>
<td>Acquaintance</td>
<td>40.2%</td>
<td>44.2%</td>
<td>35.1%</td>
</tr>
<tr>
<td>Other</td>
<td>19.3%</td>
<td>25.3%</td>
<td>23.8%</td>
</tr>
</tbody>
</table>

Table 1: Balance of Phone and Web survey estimates before and after adjusting for demographic and combined demographic and Webographic questions. Shading refers to significance at 5%. Demographic and Webographic questions are separated by a thicker line.
Table 2: Phone survey estimates and unadjusted and adjusted estimates Web survey estimates. Estimates that are significantly different ($\alpha =5\%$) from the phone survey estimates are shaded.
Table 3: Percentage of respondents reporting a doctor has ever told the respondent he/she has an emotional or psychological problem. Estimates are shown overall and by each self assessed health status category by survey mode.

<table>
<thead>
<tr>
<th>self assessed health status</th>
<th>phone</th>
<th>Web</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent/very good</td>
<td>3.3%</td>
<td>10.1%</td>
<td>6.8%</td>
</tr>
<tr>
<td>good</td>
<td>10.5%</td>
<td>15.6%</td>
<td>5.1%</td>
</tr>
<tr>
<td>fair</td>
<td>16.8%</td>
<td>30.4%</td>
<td>13.6%</td>
</tr>
<tr>
<td>poor</td>
<td>28.8%</td>
<td>52.4%</td>
<td>23.6%</td>
</tr>
<tr>
<td>overall (weighted)</td>
<td>11.5%</td>
<td>14.4%</td>
<td>2.9%</td>
</tr>
<tr>
<td></td>
<td>own house</td>
<td>working</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Adjusted using Demographics and Webographics EXCEPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factual</td>
<td>78.0%</td>
<td>30.8%</td>
<td></td>
</tr>
<tr>
<td>Attitudinal</td>
<td>78.7%</td>
<td>33.3%</td>
<td></td>
</tr>
<tr>
<td>Know gay</td>
<td>79.2%</td>
<td>36.0%</td>
<td></td>
</tr>
<tr>
<td>Factual + attitudinal</td>
<td>79.0%</td>
<td>31.6%</td>
<td></td>
</tr>
<tr>
<td>Privacy</td>
<td>80.9%</td>
<td>33.1%</td>
<td></td>
</tr>
<tr>
<td>Self-Assessed Health Status</td>
<td>81.4%</td>
<td>35.9%</td>
<td></td>
</tr>
<tr>
<td>Know gay + Privacy</td>
<td>82.4%</td>
<td>36.8%</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Adjusted estimates with different groups of variables are left out to study their effect. Estimates that are significantly different ($\alpha = 5\%$) from the phone survey estimates in Table 2 are shaded.