Teacher Pension Workshop: Connecting Evidence-Based Research to Pension Reform

Cross-Subsidization of Teacher Pension Costs: The Impact of the Discount Rate

Robert M. Costrell

RAND Education

WR-1236
March 2018

RAND working papers are intended to share researchers’ latest findings and to solicit informal peer review. They have been approved for circulation by RAND Education but have not been formally edited or peer reviewed. Unless otherwise indicated, working papers can be quoted and cited without permission of the author, provided the source is clearly referred to as a working paper. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. RAND® is a registered trademark.
Cross-Subsidization of Teacher Pension Costs: The Impact of the Discount Rate

Robert M. Costrell, University of Arkansas
Teacher Pension Workshop; March 9, 2018; RAND, Santa Monica, CA

• Uneven Distribution of Benefits:
 ➢ **Individual Normal Costs**
 ➢ Uniform Normal Cost (NC) rate masks wide Cross-Subsidies
 o within cohorts, by age of entry & exit [Costrell and McGee, 2017]
 o (x-sub across cohorts via UAL, *not* today’s paper)

• Cross-Subsidies @ current CalSTRS assumed return
• Cross-Subsidies @ lower assumed return
 ➢ **High assumed return understates redistribution w/in cohorts**
• Distribution of Benefits @ risk-free rate
 ➢ **Value of pension guarantee is highly concentrated**

• Distribution of Benefits under 1st CB plan for teachers: KS
 ➢ **KPERS assumed rate vs. risk-free rate: Much less impact**
Cost of K-12 Pensions

Employer Contributions Per Pupil for Retirement Benefits

Most of the rise is from UAL, due to assumed r > actual
4.8% of ppx Belatedly, assumed r is being cut, raising NC too.
… how are the newly valued benefits distributed?

Sources: BLS, National Compensation Survey, Employer Costs for Employee Compensation; NCES Digest of Education Statistics; BLS, CPI; author's calculations explained in Robert M. Costrell: http://www.teacherpensions.org/blog/school-pension-costs-have-doubled-over-last-decade-now-top-1000-pupil-nationally

Note: Does not include retiree health benefits or Social Security
Individual NC Rates & Cross-Subsidies

- Individuals of entry age e, separation age s.
- **Individual** NC rate (employer+employee): $n_{es} = B_{es}/W_{es}$
 - $B_{es} = \text{PV} \ @ \ \text{entry of type } es \ \text{Benefits}$
 - $W_{es} = \text{PV} \ @ \ \text{entry of type } es \ \text{Wages}$
 - n_{es} applied to each year’s pay would cover B_{es}
 - n_{es} is the annual cost (or value) of individual benefits, as % of pay

- **Uniform** cost rate, n applied to all.
 - n is set to cover cohort’s benefits (ave n)
 - Cross-subsidies ($n_{es} - n$) > or < 0
 - *In the funding plan*, wtd sum of x-sub’s = 0
 - Redistribution of benefits within cohort
The curves depict n_{es}, the annual contribution rate required to fund benefits of an individual entering at age e and exiting at age s. Variation in cost by age of exit is shown along each curve; variation by age of entry is shown across curves.

Estimated using current CalSTRS assumptions and benefit formula for new hires, slightly modified.

Implies wide variation in x-subsidies
Reduce assumed return to $r = 6.0\%$

Estimated using current CalSTRS assumptions and benefit formula for new hires, slightly modified

The curves depict n_e, the annual contribution rate required to fund benefits of an individual entering at age e and exiting at age s. Variation in cost by age of exit is shown along each curve; variation by age of entry is shown across curves.

Cross-Sub’s rise in absolute value: more redistribution

High assumed return understates redistribution w/in cohorts

Costrell, Pension Cross-Subsidies & Discount Rate
Uneven Rise in NC rates, $r = 6.0\%$ vs. 7.0%

Estimated using current CalSTRS assumptions and benefit formula for new hires, slightly modified

- All NC’s rise, but NC’s rise less on LHS, and more on RHS
- n’s rise is in between
- so x-sub $(n_{es} - n)$ widen, both on LHS and RHS

Avg rise in pos x-sub = +0.7\% of pay

Avg drop in neg x-sub = -2.1\% of pay

The curves depict Δn_{es}, the rise in annual cost to fund benefits of an individual entering at age e and exiting at age s, as r falls from 7.0\% to 6.0\%. Variation in Δn_{es} by age of exit is shown along each curve; variation by age of entry is shown across curves.

Costrell, Pension Cross-Subsidies & Discount Rate
Why is this so? “Simple” Answer

• As \(r \) drops, why does \(\Delta n_{es} \) rise with \(s \) (up to point of max \(n_{es} \))?
 (over-) simplified answer: it’s because of the back-loading.

• to a 1st approx., \(n_{es} \) rises proportionately w/drop in \(r \)

• So drop in \(r \) magnifies \(n_{es} \) more, as % of pay, where \(n_{es} \) is high

• \(\Delta n_{es} = n_{es}[\Delta n_{es}/n_{es}] = n_{es}[(\Delta B_{es}/B_{es}) - (\Delta W_{es}/W_{es})] \)

• \([(\Delta B_{es}/B_{es}) - (\Delta W_{es}/W_{es})] > 0 \) because benefits follow earnings
 but impact of \(s \) on wtd gap in time patterns is ambiguous

• The direct impact of \(s \) on \(n_{es} \) is decisive

 (it’s a different story on the refund part of the curve)
Value of Risk-Free Benefit

• Finance economics: risk-free benefit valued at risk-free r
 o Wilcox & Brown, Novy-Marx & Rauh, Biggs

• Value of individual benefits much higher than contribution rate
 o Not only critics of traditional DB plans (Richwine & Biggs)
 o Defenders, too (Rhee & Fornia)

• How is the value of the guarantee distributed?
The curves depict n_{es}, the annualized value, as a percent of earnings, for risk-free benefits of an individual entering at age e and exiting at age s. Variation by age of exit is shown along each curve; variation by age of entry is shown across curves.

Costrell, Pension Cross-Subsidies & Discount Rate
Nation’s 1st Teacher Cash Balance Plan: KS

- New hires since 2015
- Employee cont’n = 6%
- Employer cont’n credit:
 - < 5 YOS: 3%
 - 5 – 11 YOS: 4%
 - 12 – 23 YOS: 5%
 - > 23 YOS: 6%
- Interest credit, \(i = 4\% + 0.75 \times [\text{actual } r \ (5-yr \ ave) – 6\%] \)
- 5-year vesting to get employer cont’n credit
- annuitize’n @ 55 w/10 YOS; @ 65 w/5-10 YOS

- KPERs assms: \(r = 7.75\%, \ i = 6.25\% \)
NC, KPERS CB assms, $r = 7.75\%, \ i = 6.25\%$
(note: preliminary estimates by author)

Much less variation in individual NC rates
(and much lower)
NC, KPERS CB risk-free, $r = 4.0\%, \ i = 4.0\%$

(note: preliminary estimates by author)

Much less impact of lower discount rate

Costrell, Pension Cross-Subsidies & Discount Rate
Takeaways: Distributional impact of discount rate

- High assumed return understates redistribution within cohorts
- Value of pension guarantee is highly concentrated

Policy Implications?

- CB benefits much more evenly distributed
 - and less sensitive to discount rate