Teacher Pension Workshop: Connecting Evidence-Based Research to Pension Reform

Investment Risk and Its Potential Consequences for Teacher Retirement Systems and School Districts

Don Boyd and Yimeng Yin

RAND Education

WR-1250
May 2018

RAND working papers are intended to share researchers’ latest findings and to solicit informal peer review. They have been approved for circulation by RAND Education but have not been formally edited or peer reviewed. Unless otherwise indicated, working papers can be quoted and cited without permission of the author, provided the source is clearly referred to as a working paper. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. RAND® is a registered trademark.
Investment Risk and Its Potential Consequences for Teacher Retirement Systems and School Districts

Teacher Pension Workshop: Connecting Evidence-based Research to Pension Reform
RAND Corporation
Santa Monica, CA
March 8, 2018

Don Boyd
Senior Research Fellow, Center for Policy Research
Rockefeller College, University at Albany, SUNY
donboyd5@gmail.com

Yimeng Yin, Programmer & Research Analyst
Rockefeller Institute of Government
yimeng.yin@rockinst.suny.edu
Introduction

• Public pension plans in the US:
 • Public pension assets: $4+ trillion (FRB)
 • Underfunded by approx. $1.95 trillion (FRB/BEA) despite contribution increases.
• The decline in risk-free interest rates since the 1980s and 1990s has created a very difficult investing environment for public pension plans.
• Public plans largely maintained assumed returns, increased risk. (e.g., an ~12% shortfall \rightarrow \sim480b for U.S. as a whole, almost 30% of all taxes collected by all state and local govt in a single year; > income tax or sales tax).

Assumed investment returns and risk-free returns
Public and private retirement systems

<table>
<thead>
<tr>
<th>Year</th>
<th>10-year Treasury yield</th>
<th>Private average assumed return</th>
<th>State-local average assumed return</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>8.5%</td>
<td>10%</td>
<td>12%</td>
</tr>
<tr>
<td>1995</td>
<td>8.0%</td>
<td>9%</td>
<td>11%</td>
</tr>
<tr>
<td>2000</td>
<td>7.5%</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>2005</td>
<td>7.0%</td>
<td>7%</td>
<td>9%</td>
</tr>
<tr>
<td>2010</td>
<td>6.5%</td>
<td>6%</td>
<td>8%</td>
</tr>
<tr>
<td>2015</td>
<td>6.0%</td>
<td>5%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Equity-like investments as percentage of invested assets
State and local government and private sector defined benefit pension plans

<table>
<thead>
<tr>
<th>Year</th>
<th>State & local</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>1995</td>
<td>25%</td>
<td>40%</td>
</tr>
<tr>
<td>2000</td>
<td>30%</td>
<td>50%</td>
</tr>
<tr>
<td>2005</td>
<td>35%</td>
<td>60%</td>
</tr>
<tr>
<td>2010</td>
<td>40%</td>
<td>70%</td>
</tr>
<tr>
<td>2015</td>
<td>45%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Notes:
- Public pension plans data from 2001+ from Public Plans Database, Center for Retirement Research. Earlier years from multiple sources.
- Private plan data from retirement and pension associations.
- Assumed returns for public plans from state and local government public pension plans.
- Sources: Authors’ analysis of Z.1 Financial Accounts of the United States, Federal Reserve Board, Tables L.118.b, L.120.b, and L.122.
Stochastic simulation method

Model structure and goals: Mimic the behavior of real-world plans and simulate alternative funding policies and return scenarios.

A prototypical fund that resembles real-world pension plans in important ways:

- Demographics, benefit structure, stable workforce
- Actuarially determined contributions are made (including 5% employee contribution; alternatively, can override ADC)
- 75% initial funded ratio
Even IF assumptions are correct, a roller coaster path

Three individual simulations, all with 7.5% discount rate & 30-year 7.5% compound annual returns.
- Deterministic run: constant returns
- Stochastic run: high returns in early years
- Stochastic run: low returns in early years

People (politicians) interact with this system:
- Will they support 50+% contribution increases?
- Will they refrain from benefit increases and gimmicks if plan funding shoots above 100%?
And this is when return assumptions are met at 30 years. Most times, things will be better or worse than assumed.

Funding policy: 30-year level percent open with 5-year asset smoothing
Scenarios for plan responses to a decline over time in risk-free returns

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Risk-free rate</th>
<th>Expected Compound Return</th>
<th>Return volatility (Standard deviation)</th>
<th>Assumed return (Discount rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The "good old days" (High risk-free rate)</td>
<td>6.7</td>
<td>7.5</td>
<td>1.8</td>
<td>7.5</td>
</tr>
<tr>
<td>Invest in riskier assets, justifying high expected return</td>
<td>2.7</td>
<td>7.5</td>
<td>12.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Maintain allocation and lower expected return</td>
<td>2.7</td>
<td>3.5</td>
<td>1.8</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Note:
1. All values are percentage (%).
2. These are simulated scenarios that are intended to reflect main features of investment practices in certain return environments, they are not directly based on historical data.
3. It is assumed that all portfolios have the same Sharpe ratio of 0.46, and the Sharpe ratio does not change across risk-free rate regimes
Distributions of funded ratio and employer contribution rates under different return scenarios

Distribution of funded ratios across simulations under different scenarios

The good old days

Invest in riskier assets

Lower assumed return

Distribution of employer contribution rates across simulations under different scenarios

The good old days

Invest in riskier assets

Lower assumed return
Plan responses to a decline over time in risk-free returns: Summary of results

Plans faced a trade-off when risk-free rates fell: Increase risk to the pension fund, or lower return assumptions and increase government contributions

<table>
<thead>
<tr>
<th>Plan funding and employer contributions under three investment-return scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability (percent) of falling below 40% at any time within 30 years</td>
</tr>
<tr>
<td>Probability of rising by more than 10% of payroll in any 5-year period (within first 30 years)</td>
</tr>
<tr>
<td>Good old days (7.5% expected return, low volatility)</td>
</tr>
<tr>
<td>Invest in riskier assets (7.5% expected return, high volatility)</td>
</tr>
<tr>
<td>Lower assumed return (3.5% expected return, low volatility)</td>
</tr>
</tbody>
</table>
Investment risk and funding policies

• **Funding policies:** Rules to determine contributions made by sponsoring governments
 • Rules for how shortfalls are recognized and reflected in contributions
 • Statutory rules that override actuarially determined contributions

• **Trade-off in the choice of funding policies**
 • Repaying shortfalls quickly:
 • Better benefit security for beneficiaries; less burden on future taxpayers
 • Large immediate increase in contributions → sharp temp. cut in budgets or tax increases
 • Repaying shortfalls over a long time:
 • Low near-term cost; cost stability
 • Greater risk of deep underfunding and burden for future taxpayers
 • Greater insulation from investment risk for current elected officials (moral hazard)
Elements of funding policy

- **Amortization methods and periods:** How fast the unfunded liability is paid off
 - Closed or open
 - Level dollar or percent of payroll
 - Length of amortization period

- **Asset smoothing:** How fast the investment gains/losses are recognized.

- **Discount rate:** Lower discount rate \(\rightarrow\) higher estimate of liability and annual costs
 (example in paper: NC at 6% DR is \(\sim\) 2x NC at 8% DR)

- **Adjustments and overrides through caps, corridors, and statutory contribution rates**
 - Actuarially determined contributions are overridden by statutory rules in **50 percent** of the 110 large state-administered plans analyzed by a recent study over the 2001-2010 period.

- 57% of UAAL under “open” method (PPD, 2013)
- 72% of UAAL under “level pct” method (PPD, 2013)
- 2/3 of UAAL in plans with amort. period of 30 years or more; Often paired with “open method” (PPD, 2013)
Simulation of funding policies

Funding policies examined

<table>
<thead>
<tr>
<th>Amortization</th>
<th>Asset smoothing</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-year closed/open; level dollar/level percent</td>
<td>No</td>
<td>7.5%</td>
</tr>
<tr>
<td>30-year closed/open; level dollar/level percent</td>
<td>No</td>
<td>7.5%</td>
</tr>
<tr>
<td>30-year closed/open; level percent</td>
<td>5-year</td>
<td>7.5%</td>
</tr>
</tbody>
</table>

SOA Blue Ribbon Panel’s Standardized Contribution Benchmark:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15-year open; level percent</td>
<td>5-year</td>
<td>5.9%*</td>
</tr>
</tbody>
</table>

* Long-run expected compound return is 7.5% as in other scenarios, even though the actuarial assumption is 5.9%.

Risk measures

• **Contribution volatility**: Probability of sharp increase in any 5-year period of employer contribution rate
• **Risk of severe underfunding**: Probability of funded ratio falling below 40% during first 30 years
The trade-off between contribution volatility and the risk of underfunding

The very stretched-out policy of 30-year level percent amortization:

- Attractive to employer: Very low probability that contribution will rise above 10% in a 5-year period; has a far greater risk of severe underfunding than other policies.

Low in both types of risks, but requires significant increases in contributions in short term.
Scenario in which the true expected rate of return is less than the assumed return

- Some current market forecasts suggest that it can be very difficult for public pension funds to achieve their assumed returns in the current market environment. To achieve the assumed return of 7.5%, the pension funds may need to invest in even riskier portfolios.
- Scenarios examined:
 - True expected returns lower than earnings assumption: **assumed 7.5% vs true 6%**.
 - Investing in more volatile portfolio to achieve earnings assumption: **assumed = true (7.5%), higher standard deviation (17.2%)** (not in the submitted paper)
Teacher plans and funding policy

• Teacher plans are more deeply underfunded than other plans.
 • Median funded ratio 68% in 2015;
 • 76% for all plans in Public Plans Database.

• Teacher plans tend to use funding methods that take longer periods to amortize unfunded liabilities.
 • About 60% of unfunded liability of teacher plans is amortized with open methods; About 40% for non-teacher plans;
 • About 70% of unfunded liability of teacher plans is amortized with amortization period of at least 30 years; About 60% for non-teacher plans.

• Government contributions to teacher plans have fallen short of required contributions by more than they have for non-teacher plans.
 • Gov’t contributions to teacher plans were 87% of required contributions in 2015; shortfall of $6.5b;
 • 95% for other plans; shortfall of $3.8b.

• Model results for prototypical plans show that plans with stretched-out funding policies have lower contribution volatility, but are subject to higher risk of severe underfunding.
Teacher plans and separation rates

Average separation rates of the 5 largest plans for each of the three major plan types in PPD
 • Teachers generally retire at higher ages → higher accrued benefits;
 • Early-career termination rates are higher in teacher plans on average

Assumed separation rates are based on actuarial experience studies.
Teacher plans and school districts

<table>
<thead>
<tr>
<th>Salary as a percent of direct expenditure</th>
<th>State</th>
<th>City and other municipality</th>
<th>School district</th>
</tr>
</thead>
<tbody>
<tr>
<td>17%</td>
<td></td>
<td>28%</td>
<td>52%</td>
</tr>
<tr>
<td>Salary as a percent of own-source revenue</td>
<td>23%</td>
<td>47%</td>
<td>119%</td>
</tr>
</tbody>
</table>

• For school districts that pay their own pension contributions (sometimes states pay them), contribution increases are likely to be an especially large part of the budget.

• School districts with large contribution increases that do not receive state aid to help cover the increase will face an especially severe strain on the tax base.

Source: Census Bureau, 2012 Census of Governments. Note that “school district” does not include fiscally dependent school districts.
Key conclusions

• The choice by most public pension plans to increase investment portfolio risk in the face of falling risk-free returns, helping them to maintain investment return assumptions, has kept governmental contributions much lower than they otherwise would have been, but also has created greater risk to pension plan funding.

• There are important trade-offs between risks to the finances of public pension plans, and risks to their sponsoring governments. The most-common funding policies and practices reduce contribution volatility at the same time that they increase the likelihood of severe underfunding.

• These policies are unlikely to bring underfunded plans to full funding within 30 years, even if investment-return assumptions are met every single year and employers make full actuarially determined contributions.

• Teacher plans are generally more deeply underfunded and use more stretched-out funding policies than other plans, leading to greater risk of severe underfunding.

• No easy way out. Plans can de-risk to reduce volatility. But that almost certainly will require lowering earnings assumptions, in turn requiring higher contributions, albeit more stable ones.

• Need better analysis, reporting and communication of risk
Appendix
Stochastic simulation method

How we evaluate risks

<table>
<thead>
<tr>
<th>Types of funding risk</th>
<th>Measures of risks: Probability that, anytime in 30 years,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely low funded ratio</td>
<td>funded ratio will fall below 40%</td>
</tr>
<tr>
<td>Extremely high contributions</td>
<td>employer contribution will rise above 30% of payroll</td>
</tr>
<tr>
<td>Large increases in contributions in short periods of time</td>
<td>employer contribution will rise by more than 10% of payroll in a 5-year period</td>
</tr>
</tbody>
</table>

There usually are trade-offs between these risks.
Stochastic simulation method

Assumptions on investment returns
• returns are independent year to year and follow normal distribution
• expected long-run compound return of 7.5% and standard deviation of 12%

Funding policies examined

<table>
<thead>
<tr>
<th>Amortization</th>
<th>Asset smoothing</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-year closed/open; level dollar/level percent</td>
<td>No</td>
<td>7.5%</td>
</tr>
<tr>
<td>30-year closed/open; level dollar/level percent</td>
<td>No</td>
<td>7.5%</td>
</tr>
<tr>
<td>30-year closed/open; level percent</td>
<td>5-year</td>
<td>7.5%</td>
</tr>
</tbody>
</table>

SOA Blue Ribbon Panel’s Standardized Contribution Benchmark:

<table>
<thead>
<tr>
<th>Amortization</th>
<th>Asset smoothing</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-year open; level percent</td>
<td>5-year</td>
<td>5.9%*</td>
</tr>
</tbody>
</table>

* Long-run expected compound return is 7.5% as in other scenarios, even though the actuarial assumption is 5.9%.
Risks under different funding policies

Risk measures

- **Contribution volatility**: Probability of sharp increase in any 5-year period of employer contribution rate
- **Risk of severe underfunding**: Probability of funded ratio falling below 40% during first 30 years

The very stretched-out policy of 30-year level percent amortization:

- Attractive to employer: Very low probability that contribution will rise above 10% in a 5-year period
- has a far greater risk of severe underfunding than other policies.
Employer contribution: Median employer contribution rate

- Employer contributions in runs with highly stretched-out funding policies are lower in early years but higher in later years.
What happens to the funded ratio if contributions are less than actuarially determined contributions?

- Model the consequences of a shortfall in paying the actuarially determined contribution by imposing a cap on the employer contribution as 20% of payroll.

- The effect of the contribution cap is more prominent when the plan faces bad return scenarios (25th percentile) and the contribution cap is therefore triggered more frequently.