In much of the early writings about the psychology of late life, loss was the dominant theme: loss of psychological flexibility, loss of physical strength and endurance, loss of memory and other cognitive abilities, loss of friends and partners, and loss of health. More recent work has managed to separate the impact of age from the impact of illness. Thus, whereas much of the earlier research in gerontology studied the frail elderly population (e.g., residents of nursing homes), recent work has increasingly focused on healthy elders living in community settings. Removing the often profoundly devastating effects of late-life illness has produced a more multifaceted picture of the psychological functioning of elderly people; nonetheless, losses still loom large as a very salient part of old age.

Much of the diminishing of function, strength, adaptability, and

This chapter is based on a presentation given at the 105th Annual Convention of the American Psychological Association, Chicago, August 1997. The research reported in this chapter has been supported by grants from the American Association of Retired Persons Andrus Foundation, the National Institute of Mental Health (MH50841), and the National Institute on Aging (AG07476).
health that occurs with age is directly predictable from the changes that occur at the biological level—encompassing cellular, neural, endocrine, and immunologic systems—as we age. Social changes and losses are similarly predictable by demographic changes that occur as cohorts age and members die. Thus, in these cognitive, social, and health realms, lay opinion and empirical data are consistent with what we know about the biology and sociology of aging.

In contrast, in the realm of emotion, clear predictions about what kinds of age-related changes should occur are not so easy to make. Emotion is subserved by brain areas that are different from those that serve the cognitive processes that are typically studied by psychologists (e.g., explicit memory, association, computation). Accordingly, we know far less about what happens to these emotional processes and their underlying neural substrates as we enter late life. Furthermore, although a significant portion of the human emotional apparatus appears to be hard wired, there is also much about emotion that is learned. In realms such as emotional competency, emotional refinement, and emotional control, learning occurs as we attempt to cope with life's challenges. Many new emotionally relevant challenges appear in late life; thus, there is good reason to expect emotional learning to continue throughout this stage of life as well.

EMOTION: THE "LOSS" THEME

What is known about the nature of emotion in old age? Like so much about aging, there is much opinion, not enough data, and a great deal of disagreement and controversy. Similar to other aspects of aging, early views of emotion and old age were dominated by the theme of loss. Old age was seen as a time of dampened, rigid, and flat emotionality, with the lives of old people characterized as having low levels of affective energy, little "enthusiastic zest," and little emotional concern (e.g., Banham, 1951; Jung, 1933; Looft, 1972). According to this view, a central task of old age is disengagement, which includes removing emotional attachments to people, places, and objects in preparation for the end of life. Thus, according to these early depictions, the landscape of emotions in old age is bleak, desolate, and topographically impoverished.

EMOTION: THE "GAIN OR SAME" THEME

Another viewpoint that has been advocated increasingly in recent years regards emotion as a psychological realm that is relatively spared from the losses and ravages of age (e.g., Carstensen & Charles, 1998). According to this view, at the very least, we hold our own emotionally as we age.
What's more, we may even manifest emotional gains as we enter late life, encounter new experiences, and continue the lifelong process of emotional learning with its attendant increases in emotional refinement and competency. For example, in stark contrast to the loss theme, Malatesta and Kalnok (1984) found no evidence of decreasing salience of emotion with age. Similarly, Diener and Suh (1997) found that older individuals show greater life satisfaction than their younger counterparts. According to the gain theme, the landscape of emotion in old age is rich, complex, and topographically variegated.

LOSS OR GAIN?

Which theme best captures the nature of emotion in late life: Loss or gain? Straddling mind and body; occurring in solitary and interpersonal contexts; and encompassing aspects of the human condition as diverse as language, memory, thought, expression, behavior, physiology, subjective experience, and coping, a full accounting of emotion in old age would be a formidable undertaking. As is the case with so many questions involving emotion, the answer at which we arrive may depend in large part on how and where the question is pursued. It is certainly possible that age-related emotional losses will be found in some areas, maintenance of the status quo in others, and emotional gains in yet others.

HOW DOES AGE INFLUENCE EMOTION?

Before reviewing the findings derived from empirical studies of emotion and age that my colleagues and I have conducted, it might be useful to present the model of emotion (Levenson, 1988, 1994) that underlies our research. Using this model, I illustrate some of the ways in which age might exert an influence on emotion, thus making the logic and scope of our research program more clear. In this schematic model (Figure 7.1), emotion is envisioned as having a hard-wired core (the area within the box), which is embedded on both the “input” and “output” side between learned frames.

The Hard-Wired Core

The inner core of emotion consists of a mechanism that continually scans perceptual input from the outside world and mental input from the internal world in search of matches to a small set of templates that represent prototypical situations that are meaningful to the individual's well-being and survival. These prototypical situations are ones that have been
Figure 7.1. The model of emotion.
encountered by the species throughout its history. When a prototype situation is matched, the appropriate emotion is activated. The emotion is composed of the time-tested responses that are most likely to enable the organism to deal successfully with this kind of situation. Thus, prototypical situations involving threat, "taking away what is mine," "loss," or "gain" are detected, and appropriate emotional responses such as fear, anger, sadness, or happiness are activated.

Each emotion activates a set of bodily and psychological adjustments (referred to as response tendencies in the model) that act to adjust facial expression, voice tone, posture, autonomic nervous system activity, perceptual focus, and behavioral strategies (e.g., "flee," "fight," "be nurtured," "play") in ways that produce the optimal response for dealing with the prototypical situation. This hard-wired system is rapid, efficient, and does not require much in the way of conscious intervention—it picks the response that is most likely to deal successfully with situations of this type. Of course, this highly generalized response may not be the best response given the nuances of the specific situation, but this hard-wired core emotional system is not about nuances.

Age can affect this core emotional system in a number of ways, most prominently by altering the thresholds that antecedent conditions must reach in order to activate a given emotion and, once an emotion is activated, by altering the strength of the impulses that go out to the various physiological and psychological response systems. These changes are ultimately biological in nature, reflecting age-related changes in the efficiency of neural transmission and in other operating characteristics of the nervous systems.

The Learned Frames

The core emotional system is automatic in operation, requiring little, if any, conscious intervention. However, in humans (and arguably in other species as well), this core hard-wired system is enveloped by control systems, which are shaped by learning and which greatly influence both the final input to the core system and the final output or resultant behaviors and actions.

On the input side, we engage in elaborate processes of appraisal (e.g., Lazarus, 1991; Scherer, 1982) by which we process both perceptions and thoughts in ways that profoundly influence their meaning and thus their capacity to elicit emotion. For example, if we consider the template of "threat," many of the events that we consider to be threatening (as well as many of the things that we consider to be safe) reflect things that we have learned (e.g., beliefs about whether such things as strangers, oceans, or failures are dangerous).

On the output side, the core system produces tendencies to respond
in certain ways (e.g., to cry when we are sad), but we can exert a great
deal of influence over these tendencies so as to conform to learned emo-
tional display and feeling rules (e.g., rules about when it is appropriate for
people of a certain age, gender, and culture to cry). These rules often
involve the inhibition of emotional response, but they may also involve
the exaggeration or sustaining of emotional responses as well.

Age greatly affects both the input-side and output-side frames. As we
age, we appraise the world differently—situations (e.g., social rejection)
may be seen as more or less threatening than they did at other times in
our lives. With age, things are appraised against a much deeper store of
pertinent experiences, which can lend different perspectives on emotion-
ally relevant matters involving such considerations as losses and gains. Also
as we age, our inclinations to exert control over our emotional response
tendencies may change in significant ways, as may our abilities to impose
these controls effectively.

IMPLICATIONS FOR EMPIRICAL STUDIES OF EMOTION
AND AGE

In keeping with this model, the empirical work that my colleagues
and I have done has searched for age-related changes on both the input
and output side of emotion, targeting both appraisal process and measurable
emotional responses. Because the antecedents of emotion can originate
either outside of the person (e.g., environmental events) or inside the
person (e.g., thoughts and memories), we have studied emotions elicited
in both ways. The model emphasizes that multiple response systems are
involved in emotion; thus, we have attempted to sample broadly from
psychological, behavioral, and physiological (primarily autonomic and so-
matic) systems. Last, because emotional learning and development occur
in a cultural context, we have been interested in the impact that culture
has on emotion. Cultures differ greatly in their conceptions and dictates
concerning emotion. They also differ in the ways they view the aging
process, as well as in the public and private roles that are sanctioned and
prescribed for the elderly population. For this reason we have recently
started to study the ways that culture and age interact in shaping human
emotions.

In this chapter I review what my colleagues and I have learned from
our research on emotion in late life, using these findings to address the
overarching question posed at the start of this chapter, namely, “What best
describes the nature of emotion in old age: loss or gain?”

128 ROBERT W. LEVENSON
MAKING PEOPLE EMOTIONAL

One defining characteristic of our research program is it studies emotion in vivo; that is, our participants are exposed to experimental manipulations or placed into naturalistic situations that maximize the likelihood that emotions will occur. Then we study the psychological, behavioral, and physiological aspects of the emotions that ensue—often measuring emotional response systems continuously, so that we can characterize how patterns of response unfold moment by moment, in real time. Observational research on the nature of emotion in healthy elders has been rare (especially observational research studying emotion in social contexts and involving the measurement of multiple emotional response systems). Thus, much of what we know about normative emotion in old age is based largely on surveys, questionnaires, and demographic data. In our view, questionnaire and observational approaches to the study of emotion each have their own strengths. Questionnaire research is useful for revealing peoples' beliefs and judgments about emotion. Observational research is useful for revealing the magnitude, timing, and coordination of the various aspects of emotion and for elucidating the influence of contextual factors.

It is ironic that in life people spend a great deal of effort trying not to become emotional. To conduct laboratory research on emotion and aging, my colleagues and I have had to spend a great deal of effort finding ways to get people to become emotional—and not just one emotion, but rather a wide range of emotions. Our labors in this area have yielded several emotion elicitors that are useful for producing emotions in the laboratory. We have used four of these eliciting tasks in our studies of aging and emotion: (a) directed facial actions, (b) relived-emotions memories, (c) emotional films, and (d) marital interaction. I briefly describe each task before reviewing the results they have produced.

Directed Facial Actions

In studies involving directed facial actions, participants are given on each trial one of several sequences of simple instructions for moving facial muscles (e.g., "wrinkle your nose," "move your tongue forward in your mouth"). A observer in another room gives corrective feedback as necessary (e.g., "try to wrinkle your nose without raising your eyebrows"). When participants have complied with these instructions to the best of their ability, they are asked to hold the resultant facial configuration for 10 seconds. Although no emotion is ever mentioned to the participant, each sequence of instructions will, if followed correctly, produce a facial configuration that resembles the facial expression associated with a particular emotion (we typically use configurations for anger, disgust, fear, happiness, sadness, and surprise as well as a control configuration that does not have
any particular emotional meaning). Physiological responses are measured during the 10-second period when the configuration is held; participants are asked after each trial to rate the intensity of any emotions they experienced, and the facial configuration is coded (Ekman & Friesen, 1978) to determine which facial muscles were actually contracted.

Reived-Emotions Memories

In studies that involve relived emotions, participants are asked on each trial to remember a time in their lives when they experienced a particular emotion very strongly and then to relive that memory. When participants begin to experience the memory, they signal the experimenter, and then continue the experience for 15 seconds. During that 15-second period, physiological responses are measured and facial expressions are coded. After each trial, participants are asked to rate the intensity of the emotions they experienced.

Emotional Films

In studies that include emotional films, participants view short (approximately 3-minute) films that have been selected for their ability to produce particular emotions (Gross & Levenson, 1995). During the film, physiological responses are measured and facial behavior is coded. In some studies participants also indicate their moment-to-moment emotional reactions to the films using a rating dial (Levenson & Gottman, 1983). After each film, participants are asked to rate the intensity of emotions that they experienced.

Marital Interaction

In the marital-interaction task, participants engage in three unprehearsed 15-minute conversations with their spouses, each about a topic related to their marriage (i.e., “events of the day,” “marital problem,” “pleasant plan”). During the conversations, physiological responses are measured, and emotional behavior is videotaped and coded (Gottman, 1996). After participating in the interactions, spouses view the videotapes and provide moment-to-moment ratings of their emotional experience using a rating dial (Levenson & Gottman, 1983).

EMOTION IN LATE LIFE: LOSS OR GAIN?

To do justice to this important question, my colleagues and I have tried to examine age-related changes in a number of aspects of emotion.
As even a simple model, such as the one presented above, should make abundantly clear, human emotions are complex and multifaceted, and it is possible that the answer to this question may differ as a function of which aspect of emotion is being examined and under what conditions.

Autonomic Differences Among Emotions

In the evolutionary view of emotion that I (e.g., Levenson, 1994) and others hold, autonomically mediated physiological changes exist primarily to support the behavioral adaptations that emotions call forth to deal with prototypical challenges to the organism’s well-being and survival. To the extent that different emotions reliably involve different behaviors, and to the extent that these behaviors require different kinds of autonomic support, then autonomic differences among emotions should be expected (e.g., if anger begets fighting behaviors, this will require different kinds of cardiovascular support than would sadness, if sadness begets nurturance-receiving behaviors). Although most people would probably agree that the physiological changes that occur when they are angry appear to be different than those that occur when they are sad, establishing the reliability of autonomic nervous system differences among emotions has proved to be very difficult, and it remains a controversial part of the empirical and theoretical literature on emotion.

In my research on aging, I have addressed the question of whether the same patterns of autonomic activity accompany different emotions when we are young as when we are old. An alternative model would be that autonomic distinctions among emotions are present throughout our prime reproductive years and then become more blurred as we become older.

To attempt to answer this question, my colleagues and I (Levenson, Ekman, & Friesen, 1990) focused on a small set of autonomic differences among negative emotions that we found to be most reliable in a series of studies conducted with young participants and that had been found by other investigators as well (for a review, see Levenson, 1992). These autonomic changes involved three differences in heart rate between negative emotions (faster in anger than in disgust, faster in fear than in disgust, and faster in sadness than in disgust) and one difference in skin temperature (warmer in anger than in fear). We then asked whether these four differences were as likely to be found in older participants (ages 71–83) as they had been in young participants (ages 18–30).

The answer was quite clear: (a) The autonomic differences were found at significantly greater than chance levels in both older and younger participants, and (b) there were no significant differences between older participants and younger participants in how often these autonomic differences were found. It is important that these findings held regardless of
whether the emotions were produced using the directed facial action task or the relived-emotions task (Levenson, Carstensen, Friesen, & Ekman, 1991). Thus, it appears that these autonomic differences among emotions are not changed qualitatively by age—in other words, our hearts are just as likely to accelerate when we are angry when we are 75 as when we are 25. The capacity of these emotions to produce these differentiated patterns of autonomic activation appears to be built to last for a lifetime.

Magnitude of Autonomic Response

Whereas the patterning of autonomic responses appears to be unchanged with age, examination of the magnitude of autonomic responses during emotion reveals a different story. Here autonomic responses clearly show diminution with age, particularly in the cardiovascular system (but much less so in the electrodermal system). My colleagues and I have found evidence for this in a number of studies using our full range of emotion-eliciting tasks. In the studies of autonomic differences among emotions mentioned in the preceding section, heart rate changes during negative emotions in the directed facial action task were approximately twice as large for young participants as for old participants, and this difference was even greater in the relived-emotions task (Levenson et al., 1991). In a recent study using emotional films as stimuli (Tsai, Levenson, & Carstensen, 1999), older participants (ages 70–85) had significantly smaller cardiovascular responses (heart rate, vasoconstriction, finger temperature) than younger participants (ages 20–35) to both sad and amusing films, and in studies of interaction in long-term marriages, older couples (ages 60–70) had smaller cardiovascular responses (heart rate, pulse transmission time) than middle-aged couples (ages 40–50) across three 15-minute conversations (Levenson, Carstensen, & Gottman, 1994). Thus, no matter how emotions have been elicited, consistent evidence has been found for diminution in cardiovascular reactivity with age.

These findings raise several issues. First, given that the magnitude of the autonomic response is likely to be proportionate to the magnitude of the emotional response elicited by a given stimulus, it is possible that our manipulations are producing emotions of a smaller magnitude in older participants and thus the autonomic responses merely reflect this. In later sections I present data based on subjective and behavioral responses that suggest that this is not generally the case. More directly to the point, in our marriage research, when my colleagues and I statistically controlled for age-related variation in the intensity of reported emotional experience, the age-related diminution in cardiovascular response still obtained (Levenson et al., 1994). A second issue is the question of whether age-related diminution in cardiovascular reactivity is specific to emotion or rather reflects age-related changes in the general reactivity of the cardiovascular system.
(e.g., Frolikis, 1977). With currently available data, this question cannot be answered definitively, but my colleagues and I are engaged in collecting additional data that should enable us to determine whether there is age-related diminution in cardiovascular reactivity that is specific to emotion or whether these differences are more general. Regardless, in the cardiovascular realm it is clear that old age brings with it a loss of response magnitude.

Subjective Emotional Experience

In all the studies my colleagues and I have conducted, we have obtained reports of participants' emotional experience in one or more ways. Although early theoretical accounts suggest that we should predominantly find evidence of emotional blunting in the realm of self-reported emotion, this has not been the case. Rather, the picture that has emerged is more complex, with some evidence that emotional experience actually increases in old age, some that it decreases, and some indicating no change.

In Tsai et al.'s (1999) study, in which emotional films were used, my colleagues and I obtained measures of subjective experience in two ways: (a) participants adjusted a rating dial while watching each film to provide continuous online ratings of their emotions (on a positive-negative-neutral scale), and (b) participants provided retrospective self-reports using conventional rating scales to rate four positive emotions (amusement, contentment, happiness, pleasant); four negative emotions (anger, disgust, fear, sadness); and one neutral emotion (interest) after watching each film. There were no age differences found for either the sad film or the amusing film on the basis of the continuous online ratings. Similarly, there were no age differences in the retrospective reports following the sad film and no age differences in retrospective reports of negative or neutral emotions following the amusing film. However, there were age-related differences in the retrospective reports of positive emotions following the amusement film: Older participants reported experiencing less amusement, contentment, and happiness.

Levenson et al.'s (1994) study of interaction in long-term marriages revealed that some aspects of emotion might actually increase with age. On the basis of rating-dial data, across all three conversations, we found that older couples reported experiencing more positive affect than middle-aged couples.

There was only one area where my colleagues and I have found clearcut evidence of a decrease in subjective emotional experience, and that was using the directed facial action task. In this task, young participants reported experiencing the emotion associated with the emotional configuration at greater than chance levels when their facial configurations conformed closely to the prototypical expression for that emotion. For older
participants, reports of the associated emotion during the directed facial action task were rare (Levenson et al., 1991). In contrast, when these same participants took part in the relived-emotions task, no age-related differences in the intensity of reported emotional experience were found (Levenson et al., 1991).

Emotional Behavior

Visible emotional behavior provides an important avenue for assessing emotion in old age because it is not as ambiguous in meaning as autonomic nervous system responses (which can reflect any of a number of psychological and biological processes other than emotion) and it is arguably not as amenable to response and presentation biases as is self-report. In all of our studies of emotion and aging, my colleagues and I have measured some aspect of emotional behavior, either facial expressions (in our studies using directed facial actions, relived emotions, and films) or a more global measure that makes use of facial expressions and other expressive behavior (during the marital problem conversation in the study of marital interaction). Each of these has revealed different aspects of age-related changes in emotional behavior.

In the relived-emotions task, participants are not instructed to produce facial expressions, but these occur spontaneously on 15%–20% of trials. Levenson et al. (1991) found no differences in the frequency of occurrence of these expressions between old and young participants.

Facial expressions often occur in response to emotional films. When observing participants viewing a sad film, Tsai et al. (1999) found no differences between old and young individuals in the frequency of facial behavior; when viewing an amusing film, old participants smiled less than young participants.

Levenson et al.’s (1994) study of marital interaction revealed an interesting set of age differences. Controlling for differences in the rated severity of the problem being discussed, we found that older couples showed more affection than middle-aged couples, whereas middle-aged couples showed more interest, humor, and disgust (Levenson et al., 1994).

Levenson et al. (1991) also coded expressive behavior during the directed facial action task, but these data are difficult to interpret. In this task, facial behavior is the manipulated variable, and thus expressive data may not be directly relevant to the overarching question of age-related changes in emotion. Nonetheless, it is worth noting that we found the facial configurations produced by older participants to be of lesser quality (i.e., they did not conform as closely to instructions) than those produced by younger participants (Levenson et al., 1991).
Emotional Appraisals

As indicated earlier, most of the research my colleagues and I have conducted is observational in nature. Nonetheless, we do make use of questionnaires, especially in our studies of marriage. These questionnaires provide a measure of age-related differences in certain emotion-relevant appraisals. Two areas that we regularly assess are how much conflict and pleasure couples perceive in different areas of their relationship. Here our findings consistently indicate that older couples report less conflict and more pleasure than middle-aged couples across a broad range of areas in their marriages, including less conflict about children, recreation, religion, and money and more pleasure with vacations, dreams, things they have done together, and children and grandchildren (Levenson, Carstensen, & Gottman, 1993).

Conclusion: Loss, Gain, or Same?

The empirical studies of emotion and age that my colleagues and I have conducted reveal a complex picture of the nature of emotion in old age, as befits data derived from four different emotion-eliciting tasks and reflecting measurement from the domains of self-report, expressive behavior, and autonomic physiology. The findings from this series of studies (Carstensen, Gottman, & Levenson, 1995; Levenson, Carstensen, Friesen, & Ekman, 1991; Levenson, Carstensen, & Gottman, 1993, 1994; Tsai, Levenson, & Carstensen, 1999) are summarized in highly simplified form in terms of loss, gain, or same, as can be seen in Table 7.1.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Self-Report</th>
<th>Cardiovascular physiology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retrospective</td>
<td>On-line</td>
</tr>
<tr>
<td>Directed facial actions</td>
<td>Same</td>
<td>—</td>
</tr>
<tr>
<td>Related emotions</td>
<td>Same</td>
<td>—</td>
</tr>
<tr>
<td>Sad film</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Amusing film</td>
<td>Loss</td>
<td>Same</td>
</tr>
<tr>
<td>Marital interaction</td>
<td>—</td>
<td>Gain</td>
</tr>
<tr>
<td>Marital appraisals</td>
<td>Gain</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. Findings in this table are from Carstensen, Gottman, and Levenson, 1995; Levenson, Carstensen, Friesen, & Ekman, 1991; Levenson, Carstensen, and Gottman, 1993, 1994; Tsai, Levenson, and Carstensen, 1999. Please note that dashes indicate data not collected.

CHANGES IN EMOTION ACROSS ADULTHOOD
As can readily be seen, the kinds of pervasive losses that one sees in other domains of psychological functioning in old age are clearly not present in the realm of emotion. Cardiovascular reactivity during emotion is really the only area in which losses associated with old age have reliably been found and, as I indicated earlier, my colleagues and I do not currently have the data that would enable us to determine whether this diminished reactivity is more, less, or the same as would be expected given well-documented age-related changes in nonemotional cardiovascular reactivity.1 In contrast, in most of our findings concerning subjective emotional experience and emotional expression (as well as in the noncardiovascular autonomic findings), the predominant theme appears to be one of same or gain in emotional functioning in older individuals.

SAME OR GAIN: OTHER INDICATORS

The findings I have reported so far have focused primarily on the more quantitative aspects of emotion (i.e., how frequent? how large?). Having considered the evidence suggesting that, in many ways, these quantitative aspects of emotion are preserved with age, I now consider briefly some evidence that more qualitative aspects of emotion are also maintained or improve with age.

Emotional Ecology of Relationships

Although the amount of specific emotions at various points in the life span is clearly an important parameter to consider, the balance among emotions is also meaningful. In the course of studying late-life relationships, my colleagues and I have found several indications of actual gains in emotional balance that are associated with age. As indicated earlier, in appraisals concerning marriage, older couples appear to derive more pleasure while experiencing less conflict in their marriages. Handling conflict is arguably one of the most important and most challenging tasks confronting any marriage. Our findings indicate that, when discussing conflictual topics, older couples show a much more favorable balance of two emotions that are very important to perceived marital quality and actual marital stability: They show greater affection and less disgust than middle-aged couples. Affection appears to play an important role in maintaining marital quality, whereas disgust is one of the more corrosive, judgmental emotions associated with marital instability and dysfunction (e.g., Gottman &

1Transposing the comparison from losses and gains to benefits and costs, one could argue that reduced cardiovascular activation during negative emotions actually is beneficial to older individuals, insofar as excess cardiovascular reactivity is generally viewed as having negative health consequences (e.g., Kaplan, Pettersson, Mannick, & Olsson, 1991).
Levenson, 1992). It is interesting that both of these emotions can be used to de-escalate conflict during marital interaction; however, they have different consequences. Affection is an effective way of backing away from an escalating conflict, providing a soothing action that causes spouses to feel closer to each other and increases their confidence that they can deal with future marital conflict in a constructive manner. Disgust also causes spouses to back away from an escalating conflict, but here the dominant mode of action is withdrawal, with spouses feeling hurt, judged, and abandoned and losing confidence in their ability to work effectively on marital conflicts in the future. Looking at hundreds of hours of videotape of couples dealing with marital conflicts, I have been struck by the virtuoso manner in which many older couples manage their emotions in ways that are constructive rather than destructive.

Emotional Competency, Control, and Refinement

Humans are not born with a complete set of emotions; rather, more complex emotions seem to come online as part of normal social development. For example, self-conscious emotions, such as pride, shame, guilt, and embarrassment, appear later in childhood than emotions such as happiness and distress. Although most of the emphasis on emotional development in the psychological literature has been on childhood, there is good reason to believe that emotional development is a lifelong process, with certain aspects not reaching their apex until late in life. Consistent with this view are findings that emotions become increasingly salient with age (Carstensen, 1992; Carstensen & Charles, 1998; Fredrickson & Carstensen, 1990) and that older individuals show increased emotional understanding (Labouvie-Vief & DeVoe, 1991; Labouvie-Vief, DeVoe, & Bulka, 1989; Labouvie-Vief, Hakim-Larson, DeVoe, & Schoeberlein, 1989). Further indication of this increasing level of emotional competence is found in reports that elders actively structure their environments in ways that maximize positive emotion and minimize negative emotion (Carstensen, 1993; Lawton, 1989).

Another area of increasing emotional competency is in the realm of emotional control. Here again, much has been written about early life, especially how infants and children learn to achieve some modicum of skill in emotional regulation and control. But clearly this is an area in which development continues throughout adulthood and into old age, as supported by findings of age-related improvement in the control of emotion (e.g., Gross, Carstensen, Pasupathi, & Tsai, 1997; Lawton, Kleban, Ragain, & Dean, 1992). These improvements in emotional competence may contribute to the finding that older people experience lower rates of all psychiatric disorders than do younger people (Lawton et al., 1992).

Finally, I believe it is reasonable to argue that human beings' emo-
tional repertoire becomes more refined with age. There are some emotions, such as poignancy, that are hard to imagine having earlier in life (e.g., imagine a teenager experiencing poignancy). Poignancy may be a quality of our emotional apparatus that takes a lifetime of feeling and experience to develop. Similarly, there are ways of accessing emotional experience, such as reminiscence, that appear to become much more powerful and more effective in eliciting emotion as we move through adulthood and into late life.

SUMMARY AND CONCLUSION

In this chapter I have presented data from my laboratory and from the work of others suggesting that emotion represents one of the few psychological domains in which functioning is well preserved and even improves with age. In considering the larger implications of these findings, having an organism that can remain emotionally competent throughout life has clear advantages both for the individual and for society. For the individual, emotions can continue to serve their essential role in helping us cope with challenges to our well-being and survival. This always-important role may become even more critical as we age and the challenges that confront us increase in number and severity, at the same time as our other physical and psychological resources weaken. For society, there are enormous advantages in having a cohort of emotionally competent elders who can participate in the emotional education of younger people and provide models of successful emotional aging. In cultures such as the United States, where critical social institutions such as marriage are in great crisis, the opportunity to learn from older couples who have weathered the early storms of marriage and have achieved mastery of the emotional aspects represents an extremely valuable and regrettably underutilized resource.

There is a great need for additional research on emotion and aging, especially observational research that examines emotion in the kinds of social contexts where most human emotions occur. Similarly, it will be important not to treat emotion as a monolith but to continue to study the range of human emotions and to include measures of their subjective, behavioral, and physiological aspects (including central nervous, endocrine, and immunologic systems). Much of what is known about emotion and aging at this point in time (including my own work) is based largely on cross-sectional research, with its known vulnerability to cohort, historical, and survival effects. If one takes seriously the notion that emotional development is a lifelong process, then the value of longitudinal research for documenting and understanding that process should be obvious.
REFERENCES

CHANGES IN EMOTION ACROSS ADULTHOOD

