The Effect of Mass Transfer on Heat Transfer in Higher-Order Boundary Layers.

by K. Gersten, Joseph Francis Gross

Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback39 pages $20.00 $16.00 20% Web Discount

A determination of the second approximation to the solution of the Navier-Stokes equations for incompressible, 3-dimensional flow near the stagnation line on a swept cylinder. Using the method of matched asymptotic expansions to determine the coefficients in expansions for the flow-velocity components, pressure, temperature, crossflow at the wall, and wall concentration, the authors studied the effect of wall mass transfer on the second-approximation coefficients for longitudinal curvature and displacement. The results were that longitudinal curvature and displacement effects are negative and lead to decreasing values of boundary-layer characteristics. This can be explained by the stretching of the boundary layer normal to the wall by the centrifugal forces due to the convex surface curvature. Increasing mass injection at the wall heightens all second-order effects, because of the thickening in the boundary layer. The sole exception is the longitudinal curvature effect on wall concentration: it increases the wall concentration. This increase is diminished by mass injection. 39 pp. Ref. (SM)

This report is part of the RAND Corporation Report series. The report was a product of the RAND Corporation from 1948 to 1993 that represented the principal publication documenting and transmitting RAND's major research findings and final research.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit www.rand.org/about/principles.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.