Pulsatile Flow in Small Blood Vessels: I. Casson Theory.

by Jerry Aroesty, Joseph Francis Gross

Purchase

Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback30 pages $20.00 $16.00 20% Web Discount

The Casson model of printing ink flow has been shown to represent the steady flow of blood [in vitro]. This study extends the Casson model of fluid with yield stress, shear-dependent viscosity, and a power law of one half, to the pulsatile flow in arterioles, venules, and capillaries. The bloodstream is modeled as a Casson core with a much less viscous Newtonian wall layer. Velocity profiles are calculated over time for various physiologically representative cases. In the small vessels considered, inertial effects are negligible, pulsatile flow phenomena are quasi-steady, and viscous stress and pressure gradient forces are in instantaneous balance. These conclusions agree qualitatively with observations by Bugliarello and Sevilla. The plasma layer has a surprisingly large lubricating effect during periods when the effective shear viscosity is significantly higher than the ultimate high shear viscosity. These effects may be important throughout the circulation in cases of hemorrhagic shock. (See also R-768, R-769, RM-6214.) 30 pp. Ref.

This report is part of the RAND Corporation Report series. The report was a product of the RAND Corporation from 1948 to 1993 that represented the principal publication documenting and transmitting RAND's major research findings and final research.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.