Hypothesized, Directly-Coded Curve Shapes in Growth Curve Analysis

An Example

Published In: Journal of Methods and Measurement in the Social Sciences, v. 3, no. 2, 2012, p. 13-29

by Patricia M. Herman, Lee Sechrest

Read More

Access further information on this document at journals.uair.arizona.edu

This article was published outside of RAND. The full text of the article can be found at the link above.

Growth curve analysis provides important informational benefits regarding intervention outcomes over time. Rarely, however, should outcome trajectories be assumed to be linear. Instead, both the shape and the slope of the growth curve can be estimated. Non-linear growth curves are usually modeled by including either higher-order time variables or orthogonal polynomial contrast codes. Each has limitations (multicollinearity with the first, a lack of coefficient interpretability with the second, and a loss of degrees of freedom with both) and neither encourages direct testing of alternative hypothesized curve shapes. Especially in studies with relatively small samples it is likely to be useful to preserve as much information as possible at the individual level. This article presents a step-by-step example of the use and testing of hypothesized curve shapes in the estimation of growth curves using hierarchical linear modeling for a small intervention study.

This report is part of the RAND Corporation External publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit www.rand.org/about/research-integrity.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.