Fast Methods for Jackknifing Inequality Indices

Published in: Applied Econometrics, v. 37, no. 1, 2015, p. 125-138

Posted on RAND.org on April 08, 2015

by Lynn A. Karoly, Carsten Schroder

The jackknife is a resampling method that uses subsets of the original database by leaving out one observation at a time from the sample. The paper outlines a procedure to obtain jackknife estimates for several inequality indices with only a few passes through the data. The number of passes is independent of the number of observations. Hence, the method provides an efficient way to obtain standard errors of the estimators even if sample size is large. We apply our method using micro data on individual incomes for Germany and the US.

This report is part of the RAND Corporation external publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.