Cover: A Simulation Assessment of Methods to Infer Cultural Transmission on Dark Networks

A Simulation Assessment of Methods to Infer Cultural Transmission on Dark Networks

Published in: The Journal of Defense Modeling and Simulation, Volume 14, Issue 1 (January 2017), Pages 7-16. doi: 10.1177/1548512916679900

Posted on Oct 18, 2018

by Rouslan I. Karimov, Luke J. Matthews

The social transmission of beliefs, behaviors, and technologies is a central function of dark networks, just as it is in legitimate networks. One motivation for disrupting dark networks is to break the flow of information and learning. It is often unclear, however, which network should be targeted for disruption because individuals inhabit multiple and correlated networks, and the most relevant network for a given cultural process must be inferred from limited empirical data. Three analytic methods potentially are able to distinguish among alternative network diffusion processes: autoregression, dyadic regression with permutations, and dyadic regression with or random effects. All three rely on having measureable cultural outcomes and network or tree-like connections among the data points. We tested the ability of each method to infer cultural diffusion correctly within 4000 simulated datasets generated on two historical networks that linked violent and pacifist Anabaptist religious groups. Under both frequentist and Bayesian inference procedures, regression of dyadic matrices with random effects exhibited the best statistical performance. We found similar results in a more comprehensive search of the network parameter space that simulated both network structures and the diffusion of traits.

Research conducted by

This report is part of the RAND external publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.