A Cutting Plane Algorithm for Linear Reverse Convex Programs

Published in: Annals of Operations Research, v. 105, No. 1-4, July 2001, p. 201-212

Posted on RAND.org on January 01, 2001

by Khosrow Moshirvaziri, Mahyar A. Amouzegar

Read More

Access further information on this document at Annals of Operations Research

This article was published outside of RAND. The full text of the article can be found at the link above.

In this paper, global optimization of linear programs with an additional reverse convex constraint is considered. This type of problems arises in many applications such as engineering design, communications network, and many management decision support systems with budget constraints and economies-of-scale. The main difficulty with this type of problem is the presence of the complicated reverse convex constraint, which destroys the convexity and possibly the connectivity of the feasible region, putting the problems in a class of difficult and mathematically intractable problems. The authors present a cutting plane method within the scope of a branch-and-bound scheme that efficiently partitions the polytope associated with the linear constraints and systematically fathoms these portions through the use of the bounds. An upper bound and a lower bound for the optimal value is found and improved at each iteration. The algorithm terminates when all the generated subdivisions have been fathomed.

Research conducted by

This report is part of the RAND Corporation External publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit www.rand.org/about/principles.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.