Improving the Contribution of Climate Model Information to Decision Making

The Value and Demands of Robust Decision Frameworks

Published in: WIREs Climate Change, v. 4, no. 1, Jan.-Feb. 2013, p. 39-60

Posted on RAND.org on January 01, 2013

by Christopher P. Weaver, Robert J. Lempert, Casey Brown, John A. Hall, David Revell, Daniel R. Sarewitz

Read More

Access further information on this document at WIREs Climate Change

This article was published outside of RAND. The full text of the article can be found at the link above.

In this paper, we review the need for, use of, and demands on climate modeling to support so-called 'robust' decision frameworks, in the context of improving the contribution of climate information to effective decision making. Such frameworks seek to identify policy vulnerabilities under deep uncertainty about the future and propose strategies for minimizing regret in the event of broken assumptions. We argue that currently there is a severe underutilization of climate models as tools for supporting decision making, and that this is slowing progress in developing informed adaptation and mitigation responses to climate change. This underutilization stems from two root causes, about which there is a growing body of literature: one, a widespread, but limiting, conception that the usefulness of climate models in planning begins and ends with regional-scale predictions of multidecadal climate change; two, the general failure so far to incorporate learning from the decision and social sciences into climate-related decision support in key sectors. We further argue that addressing these root causes will require expanding the conception of climate models; not simply as prediction machines within 'predict-then-act' decision frameworks, but as scenario generators, sources of insight into complex system behavior, and aids to critical thinking within robust decision frameworks. Such a shift, however, would have implications for how users perceive and use information from climate models and, ultimately, the types of information they will demand from these models—and thus for the types of simulations and numerical experiments that will have the most value for informing decision making.

This report is part of the RAND Corporation External publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit www.rand.org/about/principles.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.