Development of an Algorithm to Identify Fall-Related Injuries and Costs in Medicare Data

Published in: Injury Epidemiology, 2016

Posted on on February 03, 2016

by Sung-Bou Kim, David Zingmond, Emmett B. Keeler, Lee A. Jennings, Neil S. Wenger, David Reuben, David A. Ganz

Read More

Access further information on this document at Injury Epidemiology

This article was published outside of RAND. The full text of the article can be found at the link above.

BACKGROUND: Identifying fall-related injuries and costs using healthcare claims data is cost-effective and easier to implement than using medical records or patient self-report to track falls. We developed a comprehensive four-step algorithm for identifying episodes of care for fall-related injuries and associated costs, using fee-for-service Medicare and Medicare Advantage health plan claims data for 2,011 patients from 5 medical groups between 2005 and 2009. METHODS: First, as a preparatory step, we identified care received in acute inpatient and skilled nursing facility settings, in addition to emergency department visits. Second, based on diagnosis and procedure codes, we identified all fall-related claim records. Third, with these records, we identified six types of encounters for fall-related injuries, with different levels of injury and care. In the final step, we used these encounters to identify episodes of care for fall-related injuries. RESULTS: To illustrate the algorithm, we present a representative example of a fall episode and examine descriptive statistics of injuries and costs for such episodes. Altogether, we found that the results support the use of our algorithm for identifying episodes of care for fall-related injuries. When we decomposed an episode, we found that the details present a realistic and coherent story of fall-related injuries and healthcare services. Variation of episode characteristics across medical groups supported the use of a complex algorithm approach, and descriptive statistics on the proportion, duration, and cost of episodes by healthcare services and injuries verified that our results are consistent with other studies. CONCLUSIONS: This algorithm can be used to identify and analyze various types of fall-related outcomes including episodes of care, injuries, and associated costs. Furthermore, the algorithm can be applied and adopted in other fall-related studies with relative ease.

This report is part of the RAND Corporation External publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.