Gains from Joint Cross Validation Bandwidth Selection for Derivatives of Conditional Multidimensional Densities

Published in: Journal of Statistical Computation and Simulation, v. 86, no. 4, 2016, p. 807-819

Posted on RAND.org on April 04, 2016

by Matthew D. Baird

Read More

Access further information on this document at Journal of Statistical Computation and Simulation

This article was published outside of RAND. The full text of the article can be found at the link above.

This paper studies bandwidth selection for kernel estimation of derivatives of multidimensional conditional densities, a non-parametric realm unexplored in the literature. This paper extends Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014] in its examination of conditional multivariate densities, derives and presents criteria for arbitrary kernel order and density dimension, shows consistency of the estimators, and investigates a minimization criterion which jointly estimates numerator and denominator bandwidths. I conduct a Monte Carlo simulation study for various orders of kernels in the Gaussian family and compare the new cross validation criterion with those implied by Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014]. The paper finds that higher order kernels become increasingly important as the dimension of the distribution increases. I find that the cross validation criterion developed in this paper that jointly estimates the derivative of the joint density (numerator) and the marginal density (denominator) does orders of magnitude better than criteria that estimate the bandwidths separately. I further find that using the infinite order Dirichlet kernel tends to have the best results.

This report is part of the RAND Corporation External publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit www.rand.org/about/principles.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.