Functional equations in the theory of dynamic programming—X
Resolvents, characteristic functions, and values
ResearchPublished 1958
Resolvents, characteristic functions, and values
ResearchPublished 1958
An application of the functional-equation technique of dynamic programming to the variational problem yielding the equation <>. With the introduction of the parameter <>, the resolvent operator is studied and the variational relations derived for the characteristic values and functions of the associated Sturm-Liouville equation. 28 pp.
This publication is part of the RAND paper series. The paper series was a product of RAND from 1948 to 2003 that captured speeches, memorials, and derivative research, usually prepared on authors' own time and meant to be the scholarly or scientific contribution of individual authors to their professional fields. Papers were less formal than reports and did not require rigorous peer review.
This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.
RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.