On the significance of solving linear-programming problems with some integer variables.

by George Bernard Dantzig

Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback28 pages $15.00 $12.00 20% Web Discount

A discussion of recent proposals by Gomory and others for solving linear programs involving integer-valued variables. Problems that can be reduced to this class, and thereby solved, are reviewed. It is significant that the reduction can be made for problems involving multiple dichotomies and k-fold alternatives. These problems include those with discrete variables, nonlinear separable minimizing functions, conditional constraints, global minimum of general concave functions, and combinatorial problems such as the fixed-charge problem, traveling-salesman problem, orthogonal latin-square problems, and map-coloring problems.

This report is part of the RAND Corporation paper series. The paper was a product of the RAND Corporation from 1948 to 2003 that captured speeches, memorials, and derivative research, usually prepared on authors' own time and meant to be the scholarly or scientific contribution of individual authors to their professional fields. Papers were less formal than reports and did not require rigorous peer review.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.