Cover: On the computational solution of a class of nonlinear differential-difference equations.

On the computational solution of a class of nonlinear differential-difference equations.

Published 1961

by Richard Ernest Bellman, Bella Kotkin

Purchase Print Copy

 Format Price
Add to Cart Paperback15 pages $15.00

A re-examination of the proof that the computational solution of differential- difference equations of a certain form can be made to depend on the computational solution of a related system of ordinary differential equations. This reduction is important, because in certain favorable cases it eliminates memory problems which can become formidable for multidimensional systems. Existing programs can also be used for differential equations of proven worth. This paper studies a particular equation with some interesting properties which arises in fields ranging from mathematical economics to population growth to number theory.

This report is part of the RAND paper series. The paper was a product of RAND from 1948 to 2003 that captured speeches, memorials, and derivative research, usually prepared on authors' own time and meant to be the scholarly or scientific contribution of individual authors to their professional fields. Papers were less formal than reports and did not require rigorous peer review.

This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.

RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.