Download
Download Free Electronic Document
Format | File Size | Notes |
---|---|---|
PDF file | 0.6 MB | Use Adobe Acrobat Reader version 10 or higher for the best experience. |
Purchase
Purchase Print Copy
Format | List Price | Price | |
---|---|---|---|
Add to Cart | Paperback | $20.00 | $16.00 20% Web Discount |
A formula for accepting or rejecting customers so as to maximize the expected value of the rewards for service over an infinite planning horizon. By assuming Poisson arrivals and a common exponential service time, the problem can be formulated as an infinite-horizon continuous-time Markov decision problem. A theorem is then presented that considers the fact that the loss from having a server unavailable is usually an increasing function of time if the number of servers is low, and vice versa. More than 500 simulations were run, comparing results with this theorem and with the exponential service-time distribution assumptions for 5 servers and 10 customer classes. The t-test gives preference to the theorem with confidence greater than 0.995.
This report is part of the RAND Corporation Paper series. The paper was a product of the RAND Corporation from 1948 to 2003 that captured speeches, memorials, and derivative research, usually prepared on authors' own time and meant to be the scholarly or scientific contribution of individual authors to their professional fields. Papers were less formal than reports and did not require rigorous peer review.
This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.
The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.