Intersection Graphs of Families of Convex Sets with Distinguished Points.

by W. F. Ogden, Fred S. Roberts


Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback $20.00 $16.00 20% Web Discount

Collection of intersection graphs C prime (n) is defined as all finite graphs (V, E) in which there is an assignment to each x in V of a set C(x) in a family of convex sets so that for x not equal to y, (x, y) is a member of E if and only if f(x) is a member of C(y). A graph in C prime (1) is defined as an indifference graph if each C(x) can be taken as a closed unit interval and f(x) is its midpoint. Given these definitions, two theorems are proven: first, that C prime (1) equals the class of indifference graphs, which equals the class of unit interval graphs and, second, that every graph is in C prime (2). 4 pp. Refs. (KB)

This report is part of the RAND Corporation Paper series. The paper was a product of the RAND Corporation from 1948 to 2003 that captured speeches, memorials, and derivative research, usually prepared on authors' own time and meant to be the scholarly or scientific contribution of individual authors to their professional fields. Papers were less formal than reports and did not require rigorous peer review.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.