Cover: Proof of the Heawood Conjecture for Non-Orientable Surfaces.

Proof of the Heawood Conjecture for Non-Orientable Surfaces.

by J. William T. Youngs

Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback111 pages $30.00 $24.00 20% Web Discount

A proof of the fact that the chromatic number of the non-orientable surface which is a sphere with q cross-caps is the integral part of the equation 7 plus the square root of 1 plus 24q over 2, unless q is equal to 2. In the exceptional case the chromatic number is 6. 111 pp. Ref. (Author)

This report is part of the RAND Corporation Paper series. The paper was a product of the RAND Corporation from 1948 to 2003 that captured speeches, memorials, and derivative research, usually prepared on authors' own time and meant to be the scholarly or scientific contribution of individual authors to their professional fields. Papers were less formal than reports and did not require rigorous peer review.

This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.