An Initial Value Method for Dual Integral Equations with Bessel Function Kernels.

by H. H. Natsuyama, Robert E. Kalaba

Purchase

Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback15 pages $20.00 $16.00 20% Web Discount

A report prepared for the National Environmental Satellite Service, National Oceanic and Atmospheric Administration, as a step toward solving the temperature sounding problem for a cloud-free atmosphere. Traditional methods of calculation lead to integral equations of the first kind, which are extremely difficult to solve numerically. In this report, a system of two such equations, which arises in mixed boundary value problems of potential theory, is reduced to one Fredholm integral equation of the second kind, the kernel of which does not involve the order [n] of the Bessel function. This is further reduced to a Cauchy system, i.e., an initial value problem, suitable for solving on high-speed digital computers. To apply this result to the atmospheric temperature problem would involve finding an appropriate representation for the actual kernel in terms of an expansion of Bessel functions. The numerical method may involve a quadrature formula and the method of lines.

This report is part of the RAND Corporation Report series. The report was a product of the RAND Corporation from 1948 to 1993 that represented the principal publication documenting and transmitting RAND's major research findings and final research.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit www.rand.org/about/research-integrity.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.