Purchase Print Copy

 FormatList Price
Add to Cart Paperback4 pages Free

Survey data are inevitably imperfect. First, finite budgets imply that we sample only a (very small) fraction of the population-- inducing sampling error. Second, and more pernicious, are a range of non-sampling errors. In simple cross-sectional surveys, among the important non-sampling errors are non-response bias (some people in the original sample are not found or refuse to respond) and recall bias (some people forget that events occurred or mid-date them). This paper, prepared for the session on "Longitudinal Data Systems," considers corresponding problems in longitudinal (or panel) survey efforts. Corresponding to non-response bias, there is panel attrition--some people who answer the first interview cannot be located or refuse to respond to some (or all) later interviews. Corresponding to recall bias, there is seam bias--when asked when events occurred, some people respond that their status changed immediately following their previous interview. Using the health insurance data from the Survey of Income and Program Participation (SIPP) as an example, this paper explores these two non-sampling error issues for panel data. It describes under what conditions the biases are likely to be important, proposes simple methods for identifying if the biases are present, suggests work-arounds for imperfect data, and sketches formal parametric methods for estimation in the presence of these longitudinal non-sampling biases.

Originally published in: Proceedings of the 1991 Public Health Conference on Records and Statistics : The 1990s, a Decade of Decisions for Vital and Health Statistics, July 15-17, 1991, pp. 36-39.

This report is part of the RAND Corporation Reprint series. The Reprint was a product of the RAND Corporation from 1992 to 2011 that represented previously published journal articles, book chapters, and reports with the permission of the publisher. RAND reprints were formally reviewed in accordance with the publisher's editorial policy and compliant with RAND's rigorous quality assurance standards for quality and objectivity. For select current RAND journal articles, see External Publications.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit www.rand.org/about/principles.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.