Testing for Racial Profiling in Traffic Stops From Behind a Veil of Darkness
ResearchPublished 2006
ResearchPublished 2006
The key problem in testing for racial profiling in traffic stops is estimating the risk set, or “benchmark,” against which to compare the race distribution of stopped drivers. To date, the two most common approaches have been to use residential population data or to conduct traffic surveys in which observers tally the race distribution of drivers at a certain location. It is widely recognized that residential population data provide poor estimates of the population at risk of a traffic stop; at the same time, traffic surveys have limitations and are more costly to carry out than the alternative that we propose herein. In this article we propose a test for racial profiling that does not require explicit, external estimates of the risk set. Rather, our approach makes use of what we call the “veil of darkness” hypothesis, which asserts that police are less likely to know the race of a motorist before making a stop after dark than they are during daylight. If we assume that racial differences in traffic patterns, driving behavior, and exposure to law enforcement do not vary between daylight and darkness, then we can test for racial profiling by comparing the race distribution of stops made during daylight to the race distribution of stops made after dark. We propose a means of weakening this assumption by restricting the sample to stops made during the evening hours and controlling for clock time while estimating daylight/darkness contrasts in the race distribution of stopped drivers. We provide conditions under which our estimates are robust to a substantial nonreporting problem present in our data and in many other studies of racial profiling. We propose an approach to assess the sensitivity of our results to departures from our maintained assumptions. Finally, we apply our method to data from Oakland, California and find that in this example the data yield little evidence of racial profiling in traffic stops.
Originally published in: Journal of the American Statistical Association, September 2006, Vol. 101, No. 475, pp. 878-887.
This publication is part of the RAND reprint series. The reprint series, a product of RAND from 1992 to 2011, included previously published journal articles, book chapters, and reports that were reproduced by RAND with the permission of the publisher. RAND reprints were formally reviewed in accordance with the publisher's editorial policy and compliant with RAND's rigorous quality assurance standards for quality and objectivity. For select current RAND journal articles, see external publications.
This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.
RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.