Dynamic programming, invariant imbedding and quasilinearization: comparisons and interconnections

by Richard Ernest Bellman, Robert E. Kalaba

Purchase

Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback23 pages $20.00 $16.00 20% Web Discount

A consideration, from several points of view, of a nonlinear two-point boundary value problem arising from a variational context. First a direct computational solution via quasilinearization is discussed. This method is quadratically convergent. Then the boundary value problem is converted into an initial value problem using dynamic programming and invariant imbedding. Some aspects of combining the methods in a single calculation are discussed. This gives rise to attractive predictor-corrector integration schemes. In addition, an alternative to the usual Hamilton-Jacobi integration theory for the integration of the Euler equation is given.

This report is part of the RAND Corporation Research memorandum series. The Research Memorandum was a product of the RAND Corporation from 1948 to 1973 that represented working papers meant to report current results of RAND research to appropriate audiences.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.