Cover: Invertibly Positive Linear Operators on Spaces of Continuous Functions.

Invertibly Positive Linear Operators on Spaces of Continuous Functions.

Published 1968

by Thomas A. Brown, M. L. Juncosa, Victor Klee

Purchase Print Copy

 Format Price
Add to Cart Paperback26 pages $20.00

A proof that any positive linear transformation of a space of continuous functions with a positive inverse has a certain specific form. The characterization is the same as that found by Kaplansky and others, but here it is obtained under weaker assumptions as to the topological space X and the linear space F of real-valued functions. The study was motivated by a problem in logistics, which, mathematically, was to find conditions necessary and sufficient for a positive matrix to have one of its powers equal to the identity matrix. (The results are used in Theorem II of RM-5385, Aircrew Ratio Studies.) 26 pp. Ref. (MW)

This report is part of the RAND research memorandum series. The Research Memorandum was a product of RAND from 1948 to 1973 that represented working papers meant to report current results of RAND research to appropriate audiences.

This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.

RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.