Newton's Method for the Nonlinear Integral Equation for the H Function of Isotropic Scattering.

by H. H. Natsuyama, Robert E. Kalaba


Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback12 pages $20.00 $16.00 20% Web Discount

The application of a version of Newton's method to the numerical solution of a basic nonlinear integral equation in the theory of radiative transfer. A sequence of rapidly convergent approximations to the H function of Chandrasekhar is determined. The method evaluates integrals by means of a gaussian quadrature formula, and the resulting equations can be used to obtain values quickly and accurately. Using an IBM 7044 digital computer, computing time for the Newton method was approximately 5 to 10 seconds for all cases considered in the experiment. 12 pp. (KB)

This report is part of the RAND Corporation Research memorandum series. The Research Memorandum was a product of the RAND Corporation from 1948 to 1973 that represented working papers meant to report current results of RAND research to appropriate audiences.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.