A Proposal for the Calculation of Characteristic Functions for Certain Differential and Integral Operators via Initial-Value Procedures.

by J. L. Casti, Robert E. Kalaba, M. Douglas Scott


Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback28 pages $20.00 $16.00 20% Web Discount

The theory of invariant imbedding gives the solution of an inhomogeneous problem in terms of the solution to an initial-value problem. This memorandum presents a computational approach for the solution of an inhomogeneous Fredholm integral equation of the form u = Tu + f. This equation and an expansion formula of classical analysis allow a proposal to be made for calculating the solutions to a corresponding homogeneous equation. The proposal developed here is of interest for its ability to produce isolated characteristic functions; the determination of characteristic values is applicable to neutron multiplication and is equivalent to obtaining critical dimensions of nuclear reactors. Discussion includes possible numerical difficulties and extension to other types of linear operators. 28 pp. Ref. (KB)

This report is part of the RAND Corporation Research memorandum series. The Research Memorandum was a product of the RAND Corporation from 1948 to 1973 that represented working papers meant to report current results of RAND research to appropriate audiences.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit www.rand.org/about/research-integrity.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.