Enhancing Space Resilience Through Non-Materiel Means
ResearchPublished Apr 28, 2016
Space is now a congested, contested, and competitive environment. Space systems must become more resilient to potential adversary actions and system failures, but changes to space systems are costly. To reduce costs, the Air Force asked RAND to identify non-materiel means — doctrine, organization, training, leadership and education, personnel, facilities, and policy — to enhance space resilience over the near and far terms.
ResearchPublished Apr 28, 2016
Space is now a congested, contested, and competitive environment. Space systems must become more resilient to potential adversary actions and system failures, but changes to space systems are costly. To provide a complete look at resilience and possibly realize some benefit at lower cost, the Air Force asked RAND to identify non-materiel means — doctrine, organization, training, leadership and education, personnel, facilities, and policy (DOTMLPF-P) — to enhance space resilience over the near and far terms.The authors developed implementation options to improve resilience based on a notional space protection operational concept: enhancing the capability of space operators to respond, in a timely and effective manner, to adversary counterspace actions. Operators need actionable information, appropriate organization and tactics, and dynamic command and control, supported by appropriate tools and decision aids, relevant training and exercises, and qualified personnel brought into the career field.
The authors also recommend that Air Force Space Command develop a formal, end-to-end, space protection concept of operations (CONOPS) that captures all elements needed to improve resilience. In addition, the CONOPS could potentially follow the tenet of centralized control and decentralized execution in certain situations, such as when responding to adversary counterspace actions. For the near-term options, the rough order of magnitude (ROM) nonrecurring engineering (NRE) cost of implementation is estimated to be between $2.5 million and $3.6 million. For the far-term options, the ROM NRE cost is estimated to be between $109 million and $166 million, with the ROM recurring cost between $4 million and $5.4 million per year.
This research was sponsored by the commander, Air Force Space Command, and was conducted within the Force Modernization and Employment Program of RAND Project AIR FORCE.
This publication is part of the RAND research report series. Research reports present research findings and objective analysis that address the challenges facing the public and private sectors. All RAND research reports undergo rigorous peer review to ensure high standards for research quality and objectivity.
This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.
RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.