Cover: Estimating Probit Models with Self-Selected Treatments

Estimating Probit Models with Self-Selected Treatments

Published in: Statistics in Medicine, v. 25, no. 3, Feb. 15, 2006, p. 389-413

Posted on RAND.org on January 01, 2006

by Jay Bhattacharya, Dana P. Goldman, Daniel F. McCaffrey

Outcomes research often requires estimating the impact of a binary treatment on a binary outcome in a non-randomized setting, such as the effect of taking a drug on mortality. The data often come from self-selected samples, leading to a spurious correlation between the treatment and outcome when standard binary dependent variable techniques, like logit or probit, are used. Intuition suggests that a two-step procedure (analogous to two-stage least squares) might be sufficient to deal with this problem if variables are available that are correlated with the treatment choice but not the outcome. This paper demonstrates the limitations of such a two-step procedure. The authors show that such estimators will not generally be consistent. They conduct a Monte Carlo exercise to compare the performance of the two-step probit estimator, the two-stage least squares linear probability model estimator, and the multivariate probit. The results from this exercise argue in favour of using the multivariate probit rather than the two-step or linear probability model estimators, especially when there is more than one treatment, when the average probability of the dependent variable is close to 0 or 1, or when the data generating process is not normal. The authors demonstrate how these different methods perform in an empirical example examining the effect of private and public insurance coverage on the mortality of HIV+ patients.

This report is part of the RAND Corporation External publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.